-
Notifications
You must be signed in to change notification settings - Fork 334
/
Copy path6a-xgboost-grid.R
52 lines (40 loc) · 1.59 KB
/
6a-xgboost-grid.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
library(readr)
library(ROCR)
library(xgboost)
library(parallel)
library(Matrix)
set.seed(123)
d_train <- read_csv("train-10m.csv")
d_valid <- read_csv("valid.csv")
d_test <- read_csv("test.csv")
system.time({
X_train_valid_test <- sparse.model.matrix(dep_delayed_15min ~ .-1, data = rbind(d_train, d_valid, d_test))
n1 <- nrow(d_train)
n2 <- nrow(d_valid)
n3 <- nrow(d_test)
X_train <- X_train_valid_test[1:n1,]
X_valid <- X_train_valid_test[(n1+1):(n1+n2),]
X_test <- X_train_valid_test[(n1+n2+1):(n1+n2+n3),]
})
dim(X_train)
dxgb_train <- xgb.DMatrix(data = X_train, label = ifelse(d_train$dep_delayed_15min=='Y',1,0))
dxgb_valid <- xgb.DMatrix(data = X_valid, label = ifelse(d_valid$dep_delayed_15min=='Y',1,0))
dxgb_test <- xgb.DMatrix(data = X_test, label = ifelse(d_test$dep_delayed_15min =='Y',1,0))
params <- expand.grid(max_depth = c(2,5,10,20,50), eta = 0.01,
min_child_weight = 1, subsample = 0.5)
for (k in 1:nrow(params)) {
prm <- params[k,]
print(prm)
print(system.time({
n_proc <- detectCores()
md <- xgb.train(data = dxgb_train, nthread = n_proc,
objective = "binary:logistic", nround = 10000,
max_depth = prm$max_depth, eta = prm$eta,
min_child_weight = prm$min_child_weight, subsample = prm$subsample,
watchlist = list(valid = dxgb_valid, train = dxgb_train), eval_metric = "auc",
early_stop_round = 100, printEveryN = 100)
}))
phat <- predict(md, newdata = X_test)
rocr_pred <- prediction(phat, d_test$dep_delayed_15min)
print(performance(rocr_pred, "auc"))
}