This repository has been archived by the owner on Oct 17, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvalidate.py
90 lines (76 loc) · 3 KB
/
validate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import yaml
import torch
import argparse
import os
from tqdm import tqdm
from models import get_model
from loaders import get_loader
from losses import get_loss_fn
from metrics import AverageMeter
from utils import convert_state_dict, accuracy
torch.backends.cudnn.benchmark = True
def validate(cfg, model_path):
assert model_path is not None, 'Not assert model path'
use_cuda = False
if cfg.get("cuda", None) is not None:
if cfg.get("cuda", None) != "all":
os.environ["CUDA_VISIBLE_DEVICES"] = cfg.get("cuda", None)
use_cuda = torch.cuda.is_available()
# Setup Dataloader
train_loader, val_loader = get_loader(cfg)
loss_fn = get_loss_fn(cfg)
# Load Model
model = get_model(cfg)
if use_cuda:
model.cuda()
loss_fn.cuda()
checkpoint = torch.load(model_path)
if torch.cuda.device_count() > 1: # multi gpus
model = torch.nn.DataParallel(model, device_ids=list(range(torch.cuda.device_count())))
state = checkpoint["state_dict"]
else: # 1 gpu
state = convert_state_dict(checkpoint["state_dict"])
else: # cpu
checkpoint = torch.load(model_path, map_location='cpu')
state = convert_state_dict(checkpoint["state_dict"])
model.load_state_dict(state)
validate_epoch(val_loader, model, loss_fn, use_cuda)
def validate_epoch(val_loader, model, loss_fn, use_cuda):
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
model.eval()
for i, (input, label) in enumerate(tqdm(val_loader)):
with torch.no_grad():
if use_cuda:
label = label.cuda()
input = input.cuda()
input_var = torch.autograd.Variable(input)
label_var = torch.autograd.Variable(label)
output = model(input_var)
loss = loss_fn(output, label_var)
prec1, prec5 = accuracy(output.data, label, topk=(1, 5))
losses.update(loss.data, input.size(0))
top1.update(prec1, input.size(0))
top5.update(prec5, input.size(0))
print(' **Test** Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'.format(top1=top1, top5=top5))
raise Exception(' **Test** Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'.format(top1=top1, top5=top5))
return top1.avg, losses.avg
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="config")
parser.add_argument(
"--config",
nargs="?",
type=str,
default="configs/cra_imagenet.yml",
help="Configuration file to use",
)
args = parser.parse_args()
with open(args.config) as fp:
cfg = yaml.load(fp)
run_id = cfg["training"].get("runid", 69815)
if run_id is None:
raise Exception('In validate mode, the \033[1;35mrunid\033[0m of the model directory cannot be empty')
logdir = os.path.join("runs", os.path.basename(args.config)[:-4], str(run_id))
model_path = os.path.join(logdir, cfg["training"]["best_model"])
validate(cfg, model_path=model_path)