You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I've been reproducing the experiments in Ovejero and recently have been trying to run the Paltas notebooks, and managed to test MCMC with the Population Analysis notebook. However, I cannot create my own config file or train the model with the provided example configs. In both cases, it ends in an error with kwargs_synthesis
The paltas package is installed at: /anaconda3/envs/paltas/lib/python3.11/site-packages/paltas/
(I've tried without Anaconda with the same results)
The repository is cloned at: /home/parlange/paltas/
Where do you initialize your jupyter lab kernel so that root_path is correct and you can access the /paltas/notebooks/ folder?
If I initialize at /home/parlange/paltas/ the root_path is:
/home/parlange/anaconda3/envs/paltas/lib/python3.11/site-packages/paltas/Configs/config_simple.py
(*removed /Examples/ because the package does not have that folder)
As requested, downloaded and extracted the COSMOS dataset into the cloned repository [COSMOS_23.5_training_sample.tar.gz].
Terminal commands. Tried both:
python generate.py /home/parlange/paltas/paltas/Configs/Examples/config_all.py example --n 100
python generate.py /home/parlange/anaconda3/envs/paltas/lib/python3.11/site-packages/paltas/Configs/config_all.py example --n 100
Output:
python generate.py /home/parlange/anaconda3/envs/paltas/lib/python3.11/site-packages/paltas/Configs/config_all.py example --n 100
/home/parlange/anaconda3/envs/paltas/lib/python3.11/site-packages/numba/core/decorators.py:262: NumbaDeprecationWarning: numba.generated_jit is deprecated. Please see the documentation at: https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-generated-jit for more information and advice on a suitable replacement.
warnings.warn(msg, NumbaDeprecationWarning)
Save folder path: example
/home/parlange/anaconda3/envs/paltas/lib/python3.11/site-packages/paltas/Sampling/sampler.py:110: UserWarning: Parameter in cross dict specified elsewhere! Will be overwritten
warnings.warn('Parameter in cross dict specified elsewhere!'
0%| | 0/100 [00:00<?, ?it/s]/home/parlange/anaconda3/envs/paltas/lib/python3.11/site-packages/paltas/Configs/config_handler.py:528: RuntimeWarning: kwargs_numerics supersampling_factor modified for drizzle
warnings.warn('kwargs_numerics supersampling_factor modified '
/home/parlange/anaconda3/envs/paltas/lib/python3.11/site-packages/paltas/Configs/config_handler.py:535: RuntimeWarning: kwargs_numerics point_source_supersampling_factor modified for drizzle
warnings.warn('kwargs_numerics point_source_supersampling_factor'
Traceback (most recent call last):
File "/home/parlange/anaconda3/envs/paltas/lib/python3.11/site-packages/paltas/generate.py", line 137, in <module>
main()
File "/home/parlange/anaconda3/envs/paltas/lib/python3.11/site-packages/paltas/generate.py", line 81, in main
image, metadata = config_handler.draw_image(new_sample=True)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/parlange/anaconda3/envs/paltas/lib/python3.11/site-packages/paltas/Configs/config_handler.py", line 646, in draw_image
image,metadata = self._draw_image_drizzle()
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/parlange/anaconda3/envs/paltas/lib/python3.11/site-packages/paltas/Configs/config_handler.py", line 544, in _draw_image_drizzle
image_ss, metadata = self._draw_image_standard(add_noise=False,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/parlange/anaconda3/envs/paltas/lib/python3.11/site-packages/paltas/Configs/config_handler.py", line 414, in _draw_image_standard
kwargs_model, kwargs_params = self.get_lenstronomy_models_kwargs(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/parlange/anaconda3/envs/paltas/lib/python3.11/site-packages/paltas/Configs/config_handler.py", line 190, in get_lenstronomy_models_kwargs
self.main_deflector_class.draw_main_deflector())
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/parlange/anaconda3/envs/paltas/lib/python3.11/site-packages/paltas/MainDeflector/simple_deflectors.py", line 133, in draw_main_deflector
p_names = ProfileListBase._import_class(model,None,None).param_names
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
TypeError: ProfileListBase._import_class() missing 1 required positional argument: 'kwargs_synthesis'
0%| | 0/100 [00:02<?, ?it/s]
Thank you for releasing your work on strong lensing.
The text was updated successfully, but these errors were encountered:
Hi @swagnercarena
I've been reproducing the experiments in Ovejero and recently have been trying to run the Paltas notebooks, and managed to test MCMC with the Population Analysis notebook. However, I cannot create my own config file or train the model with the provided example configs. In both cases, it ends in an error with kwargs_synthesis
The paltas package is installed at:
/anaconda3/envs/paltas/lib/python3.11/site-packages/paltas/
(I've tried without Anaconda with the same results)
The repository is cloned at:
/home/parlange/paltas/
Where do you initialize your jupyter lab kernel so that root_path is correct and you can access the /paltas/notebooks/ folder?
If I initialize at /home/parlange/paltas/ the root_path is:
config_handler joins
config_handler = ConfigHandler(os.path.join(root_path,'/paltas/Configs/config_simple.py'))
Result:
/home/parlange/anaconda3/envs/paltas/lib/python3.11/site-packages/paltas/Configs/config_simple.py
(*removed /Examples/ because the package does not have that folder)
As requested, downloaded and extracted the COSMOS dataset into the cloned repository [COSMOS_23.5_training_sample.tar.gz].
Terminal commands. Tried both:
python generate.py /home/parlange/paltas/paltas/Configs/Examples/config_all.py example --n 100
python generate.py /home/parlange/anaconda3/envs/paltas/lib/python3.11/site-packages/paltas/Configs/config_all.py example --n 100
Output:
Thank you for releasing your work on strong lensing.
The text was updated successfully, but these errors were encountered: