-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_ax_learning.py
83 lines (74 loc) · 1.88 KB
/
test_ax_learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import torch
import argparse
import os
from exp.ax_learning import AuxiliaryLearningModel
import random
import numpy as np
from utils.tools import dotdict
import pandas as pd
print(torch.cuda.is_available())
print(torch.cuda.device_count())
print(torch.cuda.get_device_name())
print(torch.cuda.current_device())
torch.cuda.is_available()
torch.cuda.set_device(0)
# args = parser.parse_args()
args = dotdict()
args.target = 'OT'
args.des = 'test'
#args.dropout = 0.05
args.num_workers = 0
args.gpu = 0
args.lradj = 'type1'
args.devices = '0'
args.use_gpu = True
args.use_multi_gpu = False
args.freq = 'h'
args.root_path = './data/ETT/'
args.data_path ='ETTh1.csv'
args.model_id='ETTh1_192_18'
args.data = 'ETTh1'
args.features = 'M'
args.len = 10
args.time_point = 1
args.ax_l = True
args.seq_len = 192
args.label_len = 96
args.pred_len = 18
args.itr = 1
args.learning_rate = 0.001
args.batch_size = 32
args.embed = 'timeF'
args.loss = 'mse'
args.train_epochs = 10
print('Args in experiment:')
print(args)
Exp = AuxiliaryLearningModel
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
for ii in range(args.itr):
# setting record of experiments
setting = '{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_fc{}_eb{}_dt{}_{}_{}'.format(
args.freq,
args.model_id,
args.model,
args.data,
args.features,
args.len,
args.time_point,
args.ax_l,
args.seq_len,
args.label_len,
args.pred_len,
args.d_model,
args.n_heads,
args.e_layers,
args.d_layers,
args.d_ff,
args.factor,
args.embed,
args.distil,
args.des, ii)
exp = Exp(args) # set experiments
print(1)
print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
exp.train(setting)