forked from udacity/P1_Facial_Keypoints
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodels.py
67 lines (50 loc) · 2.62 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
## TODO: define the convolutional neural network architecture
import torch
import torch.cuda
#from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
# can use the below import should you choose to initialize the weights of your Net
import torch.nn.init as I
def gpu(x):
return x.cuda() if torch.cuda.is_available() else x
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
## TODO: Define all the layers of this CNN, the only requirements are:
## 1. This network takes in a square (same width and height), grayscale image as input
## 2. It ends with a linear layer that represents the keypoints
## it's suggested that you make this last layer output 136 values, 2 for each of the 68 keypoint (x, y) pairs
# As an example, you've been given a convolutional layer, which you may (but don't have to) change:
# 1 input image channel (grayscale), 32 output channels/feature maps, 5x5 square convolution kernel
self.conv1 = nn.Conv2d(1, 32, 7, 3, 1) ## output size = (W-F+2P)/S +1 = (224-7+2)/3 +1 = 74
self.conv2 = nn.Conv2d(32, 64, 5, 3, 0) ## output size = (W-F+2P)/S +1 = (74-5)/3 +1 = 24
self.conv3 = nn.Conv2d(64, 128, 5, 3, 1) ## output size = (24-5+2)/3 +1 = 8
self.conv4 = nn.Conv2d(128, 256, 3, 1, 0) ## output size = (8-3)/1 +1 = 6
self.conv5 = nn.Conv2d(256, 512, 3, 1, 0) ## output size = (6-3)/1 +1 = 4
self.conv6 = nn.Conv2d(512, 512, 1, 1, 0) ## output size = (4-1)/1 +1 = 4
self.fc1 = nn.Linear(4*4*512, 1024)
self.fc1_drop = nn.Dropout(p=0.3)
self.fc2 = nn.Linear(1024, 1024)
self.fc2_drop = nn.Dropout(p=0.3)
self.fc3 = nn.Linear(1024, 136)
def forward(self, x):
## TODO: Define the feedforward behavior of this model
## x is the input image and, as an example, here you may choose to include a pool/conv step:
## x = self.pool(F.relu(self.conv1(x)))
# Apply convolutional layers
x = F.selu(self.conv1(x))
x = F.selu(self.conv2(x))
x = F.selu(self.conv3(x))
x = F.selu(self.conv4(x))
x = F.selu(self.conv5(x))
x = F.selu(self.conv6(x))
# Flatten and continue with dense layers
x = x.view(x.size(0), -1)
x = F.selu(self.fc1(x))
x = self.fc1_drop(x)
x = F.selu(self.fc2(x))
x = self.fc2_drop(x)
x = self.fc3(x)
# a modified x, having gone through all the layers of your model, should be returned
return x