-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgain_ver1.py
67 lines (55 loc) · 2.99 KB
/
gain_ver1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import os
import sys
import openai
from langchain.chains import ConversationalRetrievalChain, RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import DirectoryLoader, TextLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.indexes import VectorstoreIndexCreator
from langchain.indexes.vectorstore import VectorStoreIndexWrapper
from langchain.llms import OpenAI
from langchain.vectorstores import Chroma
import constants
print(r'''
╔═╗ ╔═╗╦ ╦╔═╗╔╦╗ ╔═╗ ┬ ┬┌─┐┌─┐┌┬┐┬┌─┐┌┐┌ ┬ ╔═╗┌┐┌┌─┐┬ ┬┌─┐┬─┐
║═╬╗╠═╣╚╦╝╠═╝ ║║ ─── ║═╬╗│ │├┤ └─┐ │ ││ ││││ ┌┼─ ╠═╣│││└─┐│││├┤ ├┬┘
╚═╝╚╩ ╩ ╩ ╩ ═╩╝ ╚═╝╚└─┘└─┘└─┘ ┴ ┴└─┘┘└┘ └┘ ╩ ╩┘└┘└─┘└┴┘└─┘┴└─
╦ ╦┌─┐┬ ┬┬─┐ ╔═╗┌─┐┬─┐┌─┐┌─┐┌┐┌┌─┐┬ ╔╦╗┌─┐┌─┐┬ ┬┌┬┐┌─┐┌┐┌┌┬┐┌─┐
╚╦╝│ ││ │├┬┘ ╠═╝├┤ ├┬┘└─┐│ ││││├─┤│ ║║│ ││ │ ││││├┤ │││ │ └─┐
╩ └─┘└─┘┴└─ ╩ └─┘┴└─└─┘└─┘┘└┘┴ ┴┴─┘ ═╩╝└─┘└─┘└─┘┴ ┴└─┘┘└┘ ┴ └─┘
- QAYPD => Question-Answer Your Personal Documents''')
os.environ["OPENAI_API_KEY"] = constants.APIKEY
# Enable to save to disk & reuse the model (for repeated queries on the same data)
# PERSIST = False
PERSIST = True
query = None
if len(sys.argv) > 1:
query = sys.argv[1]
if PERSIST and os.path.exists("persist"):
print("Reusing index...\n")
vectorstore = Chroma(persist_directory="persist", embedding_function=OpenAIEmbeddings())
index = VectorStoreIndexWrapper(vectorstore=vectorstore)
else:
#loader = TextLoader("data/data.txt") # Use this line if you only need data.txt
loader = DirectoryLoader("data/")
if PERSIST:
index = VectorstoreIndexCreator(vectorstore_kwargs={"persist_directory":"persist"}).from_loaders([loader])
else:
index = VectorstoreIndexCreator().from_loaders([loader])
chain = ConversationalRetrievalChain.from_llm(
# llm=ChatOpenAI(model="gpt-3.5-turbo"),
# llm=ChatOpenAI(model="gpt-4"),
llm=ChatOpenAI(model_name="gpt-4"),
retriever=index.vectorstore.as_retriever(search_kwargs={"k": 1}),
)
chat_history = []
while True:
if not query:
query = input("\n----------------------------------------------------------------------------------------------------------------\n\nPROMPT: ")
if query in ['quit', 'q', 'exit']:
print('exited.')
sys.exit()
result = chain({"question": query, "chat_history": chat_history})
print("GAIN: "+result['answer'])
chat_history.append((query, result['answer']))
query = None