-
Notifications
You must be signed in to change notification settings - Fork 1
/
commands.py
151 lines (145 loc) · 4.91 KB
/
commands.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
"""In this file, the description of commands for main.py are presented.
Dictionary 'options' has arguments that take one value from choices.
Dictionary 'continuous_args' has arguments that take any real number.
"""
import pandas as pd
options = {
"task": {
"type": str,
"choices": ["solve", "create_data"],
"default": "solve",
"help": "solve: to solve models (mssp or 2ssp); create_data: to create instances"
},
"hurricane": {
"type": str,
"choices": ["Florence", "Ian"],
"default": "Ian",
"help": "Name of hurricanr (Florence or Ian)"
},
"landfall": {
"type": str,
"choices": ['r', 'd'],
"default": 'r',
"help": "hurricane landfall type considered. r=random; d=deterministic. " +
"d is only applicable to hurricane Florence and r only to Ian. " +
"This command is only used to clarify the nature of two case studies. " +
"It is useless in operation."
},
"data_opt": {
"type": int,
"choices": [1, 2, 3, 4],
"default": 2,
"help": "This arg is only applicable to task = create_data. " +
"option = 1 if creating data related to forecast errors only, " +
"2 if creating demand data based on pre-existing forecast error data, " +
"3 if only creating logistic parameters data, " +
"4 if creating all data at once."
},
"model": {
"type": str,
"choices": ["2ssp", "mssp"],
"default": "mssp",
"help": "This arg is needed when task = solve. " +
"The options are models to solve (2ssp, or mssp)."
},
"delay": {
"type": int,
"choices": [1, 2],
"default": 1,
"help": "1 if delayed facilities opening allowed in the first-stage MILP; 2 if only allowed to open at t=0"
},
"method": {
"type": str,
"choices": ["bb", "bc", "ext"],
"default": "bc",
"help": "Algorithm: bb (naive branch & bound); "+
"bc (branch & bound with lazy cuts through callback); "+
"ext (extended model (works on 2ssp model only))"
},
"instance": {
"type": int,
"choices": [1, 2, 3],
"default": 3,
"help": "Instance index"
},
"eval": {
"type": str,
"choices": ["oos", "mc_tree", "both", "none"],
"default": "both",
"help": "Type of sample paths (OOS or from MC tree) to evaluate MSSP models on. Two-stage models do not take (both) input since training of two appraoches in 2SSP are different."
},
"first_stg_opt": {
"type": int,
"choices": [1, 2],
"default": 1,
"help": "1 if the first-stage problem is a mixed-integer or,2 if all SPs are open at the beginning and the first-stage problem is a continuous LP"
},
"oos_heur": {
"type": int,
"choices": [1, 2],
"default": 1,
"help": "Heuristic option to do OOS test for MSSP model. 1 if solving closest transient/absorbing states from the tree for transient/absorbing OOS state. 2 if solving the closest cost function regardless of transient/absorbing characteristic."
},
"ST_track": {
"type": int,
"choices": [3, 5, 10, 15],
"default": 15,
"help": "The number of MC States to use for track-error in Florence case with "+
"deterministic landfall."
},
}
continuous_args = {
"gfact": {
"type": int,
"default": 100,
"help": "Emergency cost factor"
},
"pfact": {
"type": int,
"default": 200,
"help": "Penalty cost factor"
},
"ffact": {
"type": int,
"default": 3,
"help": "Fixed cost factor"
},
"purchase_cost": {
"type": float,
"default": 1,
"help": "Per unit relief items purchase cost"
},
"time_limit_train": {
"type": int,
"default": 3600,
"help": "Time limit (in sec) for training (optimization algorithm)"
},
"time_limit_test": {
"type": int,
"default": 3600,
"help": "Time limit (in sec) for evaluation (testing on out-sample or samples from the tree)"
},
"n_UB_samples": {
"type": int,
"default": 1000,
"help": "Number of sample to use for statistical UB in MSSP model."
},
"n_oos": {
"type": int,
"default": 1000,
"help": "Number of out-of-samples to evaluate the model on"
},
}
def get_commands():
# Read defaults from .csv for ease
df = pd.read_csv('command_defaults.csv', sep=' ', index_col=0)
defaults = {k: v for k, v in zip(df.index, df.values.ravel())}
for k, v in defaults.items():
try:
defaults[k] = int(v)
except ValueError:
try:
defaults[k] = float(v)
except ValueError:
defaults[k] = v
return options, continuous_args, defaults