-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
197 lines (151 loc) · 6.97 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import torch
import torch.nn.functional as F
import numpy as np
from PIL import Image, ImageFont, ImageDraw
from matplotlib import cm
# from fonts.ttf import Roboto
def freeze_params(params):
for param in params:
param.requires_grad_(False)
def unfreeze_params(params):
for param in params:
param.requires_grad_(True)
def expand_image(im: torch.Tensor, h = 512, w = 512, absolute: bool = False, threshold: float = None) -> torch.Tensor:
im = im.unsqueeze(0).unsqueeze(0)
im = F.interpolate(im.float().detach(), size=(h, w), mode='bicubic')
if not absolute:
im = (im - im.min()) / (im.max() - im.min() + 1e-8)
if threshold:
im = (im > threshold).float()
# im = im.cpu().detach()
return im.squeeze()
def image_overlay_heat_map(img, heat_map, word=None, out_file=None, crop=None, alpha=0.5, caption=None, image_scale=1.0):
# type: (Image.Image | np.ndarray, torch.Tensor, str, Path, int, float, str, float) -> Image.Image
assert(img is not None)
if heat_map is not None:
shape : torch.Size = heat_map.shape
# heat_map = heat_map.unsqueeze(-1).expand(shape[0], shape[1], 3).clone()
heat_map = _convert_heat_map_colors(heat_map)
heat_map = heat_map.to('cpu').detach().numpy().copy().astype(np.uint8)
heat_map_img = Image.fromarray(heat_map)
img = Image.blend(img, heat_map_img, alpha)
else:
img = img.copy()
if caption:
img = _write_on_image(img, caption)
if image_scale != 1.0:
x, y = img.size
size = (int(x * image_scale), int(y * image_scale))
img = img.resize(size, Image.BICUBIC)
return img
def otsu_thresholding(image):
# 画像のヒストグラムを計算
hist, bin_edges = np.histogram(image, bins=256, range=(0, 255))
# 各閾値でのクラス内分散とクラス間分散を計算
pixel_sum = np.sum(hist)
weight1 = np.cumsum(hist)
weight2 = pixel_sum - weight1
# ゼロ除算を避ける
mean1 = np.cumsum(hist * bin_edges[:-1]) / (weight1 + (weight1 == 0))
mean2 = (np.cumsum(hist[::-1] * bin_edges[1:][::-1]) / (weight2[::-1] + (weight2[::-1] == 0)))[::-1]
# クラス間分散を最大にする閾値を求める
inter_class_variance = weight1[:-1] * weight2[1:] * (mean1[:-1] - mean2[1:]) ** 2
threshold = np.argmax(inter_class_variance)
# 二値化処理
binary_image = np.where(image <= threshold, 0, 255)
return binary_image.astype(np.uint8)
def otsu_thresholding_torch(image):
# 画像のヒストグラムを計算
hist = torch.histc(image.float(), bins=256, min=0, max=255).to(image.device)
# 各閾値でのクラス内分散とクラス間分散を計算
pixel_sum = torch.sum(hist)
weight1 = torch.cumsum(hist, 0)
weight2 = pixel_sum - weight1
bin_edges = torch.arange(256).float().to(image.device)
# ゼロ除算を避ける
mean1 = torch.cumsum(hist * bin_edges, 0) / (weight1 + (weight1 == 0))
mean2 = (torch.cumsum(hist.flip(0) * bin_edges.flip(0), 0) / (weight2.flip(0) + (weight2.flip(0) == 0))).flip(0)
# クラス間分散を最大にする閾値を求める
inter_class_variance = weight1[:-1] * weight2[1:] * (mean1[:-1] - mean2[1:]) ** 2
threshold = torch.argmax(inter_class_variance)
# 二値化処理
binary_image = torch.where(image <= threshold, 0, 255)
return binary_image.type(torch.uint8)
def image_with_otsu(tensor):
# Tensorをnumpy配列に変換し、範囲を0-255に変換
image = np.array(tensor * 255, dtype=np.uint8)
# 大津の二値化を適用
binary_image = otsu_thresholding(image)
# 二値化された画像をPIL Imageオブジェクトに変換
return Image.fromarray(binary_image)
def mask_with_otsu(tensor):
# Tensorをnumpy配列に変換し、範囲を0-255に変換
image = np.array(tensor * 255, dtype=np.uint8)
# 大津の二値化を適用
binary_image = otsu_thresholding(image)
# 二値化された画像を0~1のTensorに変換
return torch.tensor(binary_image / 255, dtype=tensor.dtype)
def mask_with_otsu_pytorch(tensor : torch.Tensor):
# Tensorをnumpy配列に変換し、範囲を0-255に変換
tensor = (tensor - tensor.min()) / (tensor.max() - tensor.min())
image = (tensor * 255).to(torch.uint8)
# 大津の二値化を適用
binary_image = otsu_thresholding_torch(image)
# 二値化された画像を0~1のTensorに変換
return (binary_image / 255.0).to(tensor.dtype)
def _write_on_image(img, caption, font_size = 32):
ix,iy = img.size
draw = ImageDraw.Draw(img)
margin=2
fontsize=font_size
draw = ImageDraw.Draw(img)
# font = ImageFont.truetype(Roboto, fontsize)
text_height=iy-60
tx = draw.textbbox((0,0),caption)
draw.text((int((ix-tx[2])/2),text_height+margin),caption,(0,0,0),font=font)
draw.text((int((ix-tx[2])/2),text_height-margin),caption,(0,0,0),font=font)
draw.text((int((ix-tx[2])/2+margin),text_height),caption,(0,0,0),font=font)
draw.text((int((ix-tx[2])/2-margin),text_height),caption,(0,0,0),font=font)
draw.text((int((ix-tx[2])/2),text_height), caption,(255,255,255),font=font)
return img
def _convert_heat_map_colors(heat_map : torch.Tensor):
def get_color(value):
return np.array(cm.turbo(value / 255)[0:3])
color_map = np.array([ get_color(i) * 255 for i in range(256) ])
color_map = torch.tensor(color_map, device=heat_map.device, dtype=heat_map.dtype)
heat_map = (heat_map * 255).long()
return color_map[heat_map]
# Function to recursively extract details
def extract_details(data, details_list, c_encode, c_decode):
if isinstance(data, dict):
if 'index' in data and 'concept_token' in data and 'prompts' in data:
# Extract the position of concept_token in each prompt
concept_token = data['concept_token']
prompts = data['prompts']
subject = data['subject']
tokens = c_encode(prompts[0])
token_positions = -1
for idx, token in enumerate(tokens):
if c_decode(int(token)) == data['concept_token']:
token_positions = idx
details_list.append({
'index': data['index'],
'concept_token': concept_token,
'prompts': prompts,
'token_positions': token_positions,
'subject': subject
})
for key, value in data.items():
extract_details(value, details_list, c_encode, c_decode)
elif isinstance(data, list):
for item in data:
extract_details(item, details_list, c_encode, c_decode)
def concept_pprint(detail):
print(f"Index: {detail['index']}")
print(f"Concept Token: {detail['concept_token']}")
print(f"Concept Token Positions: {detail['token_positions']}")
print("Prompts:")
print(f"Subject: {detail['subject']}")
if detail['prompts']:
for prompt in detail['prompts']:
print(f" - {prompt}")