-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathprocessors.py
885 lines (763 loc) · 38.2 KB
/
processors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
from __future__ import annotations
import abc
import cv2
import gc
from typing import Optional, Union, Tuple, List, Callable, Dict, Any
from IPython.display import display
import numpy as np
import torch
import torch.nn.functional as F
from tqdm.notebook import tqdm
from PIL import Image, ImageDraw, ImageFont
from diffusers.models.attention import Attention
from utils import mask_with_otsu_pytorch
from torchvision.transforms import PILToTensor
import torch.nn as nn
import cupy as cnp
from copy import deepcopy
def text_under_image(image: np.ndarray, text: str, text_color: Tuple[int, int, int] = (0, 0, 0)) -> np.ndarray:
h, w, c = image.shape
offset = int(h * .2)
img = np.ones((h + offset, w, c), dtype=np.uint8) * 255
font = cv2.FONT_HERSHEY_SIMPLEX
img[:h] = image
textsize = cv2.getTextSize(text, font, 1, 2)[0]
text_x, text_y = (w - textsize[0]) // 2, h + offset - textsize[1] // 2
cv2.putText(img, text, (text_x, text_y), font, 1, text_color, 2)
return img
def view_images(images: Union[np.ndarray, List],
num_rows: int = 1,
offset_ratio: float = 0.02,
display_image: bool = False) -> Image.Image:
""" Displays a list of images in a grid. """
if type(images) is list:
num_empty = len(images) % num_rows
elif images.ndim == 4:
num_empty = images.shape[0] % num_rows
else:
images = [images]
num_empty = 0
empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255
images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty
num_items = len(images)
h, w, c = images[0].shape
offset = int(h * offset_ratio)
num_cols = num_items // num_rows
image_ = np.ones((h * num_rows + offset * (num_rows - 1),
w * num_cols + offset * (num_cols - 1), 3), dtype=np.uint8) * 255
for i in range(num_rows):
for j in range(num_cols):
image_[i * (h + offset): i * (h + offset) + h:, j * (w + offset): j * (w + offset) + w] = images[
i * num_cols + j]
pil_img = Image.fromarray(image_)
if display_image:
display(pil_img)
return pil_img
class P2PCrossAttnProcessor:
def __init__(self, controller, place_in_unet):
super().__init__()
self.controller = controller
self.place_in_unet = place_in_unet
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
is_cross = encoder_hidden_states is not None
batch_size, sequence_length, _ = hidden_states.shape
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
self_subject_attention_mask = None
query = attn.to_q(hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
if self.place_in_unet in ("mid", "up") and not is_cross:
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, dim = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if self.controller.cur_step != 0:
key = key.reshape(batch_size * sequence_length, dim).unsqueeze(0).repeat(batch_size, 1, 1)
value = value.reshape(batch_size * sequence_length, dim).unsqueeze(0).repeat(batch_size, 1, 1)
query = attn.head_to_batch_dim(query) # [batch_size, seq_len, dim] -> [batch_size * heads, seq_len, dim // heads]
key = attn.head_to_batch_dim(key) # [batch_size, seq_len, dim] -> [batch_size * heads, seq_len, dim // heads]
value = attn.head_to_batch_dim(value) # [batch_size, seq_len, dim] -> [batch_size * heads, seq_len, dim // heads]
head_size = attn.heads
dropout = 0.5
mask_size = int(sequence_length ** 0.5)
batch_masks = []
midpoint = batch_size // 2
mask_one = torch.ones((query.shape[1], query.shape[1]), device=query.device, dtype=query.dtype)
mask_zero = torch.zeros((query.shape[1], query.shape[1]), device=query.device, dtype=query.dtype)
self_subject_attention_mask = _aggregate_attention_ostu_mask(self.controller, res=32, batch_size=batch_size, from_where=("up", "down","mid"), is_cross=True)
injection_mask = [[]for i in range(batch_size)]
for batch_index in range(batch_size):
masks = []
for idx, sdsa_mask in enumerate(self_subject_attention_mask):
if idx == batch_index:
sdsa_mask = mask_one
elif (idx < midpoint and batch_index >= midpoint) or (idx >= midpoint and batch_index < midpoint):
sdsa_mask = mask_zero
else:
sdsa_mask = mask_with_otsu_pytorch(sdsa_mask)
injection_mask[idx].append(sdsa_mask.clone())
sdsa_mask = sdsa_mask.unsqueeze(0).unsqueeze(0)
mask_size = int(sequence_length ** 0.5)
sdsa_mask = F.interpolate(sdsa_mask.to(query.device), size=(mask_size, mask_size), mode='bilinear', align_corners=False)
sdsa_mask = sdsa_mask.view(-1, sequence_length)
sdsa_mask = sdsa_mask.unsqueeze(1).repeat(1, 1, sequence_length, 1)
sdsa_mask = sdsa_mask.squeeze(0).squeeze(0)
# drop out mask(if pixel value is droped out, it is 0)
sdsa_mask = F.dropout(sdsa_mask, p=dropout, training=True)
masks.append(sdsa_mask)
masks = torch.cat(masks, dim=1)
# print("masks", batch_index, masks.shape)
masks = masks.unsqueeze(0).repeat(head_size, 1, 1)
batch_masks.append(masks.detach())
attention_mask = torch.log(torch.cat(batch_masks, dim=0))
else:
query = attn.head_to_batch_dim(query) # [batch_size, seq_len, dim] -> [batch_size * heads, seq_len, dim // heads]
key = attn.head_to_batch_dim(key) # [batch_size, seq_len, dim] -> [batch_size * heads, seq_len, dim // heads]
value = attn.head_to_batch_dim(value) # [batch_size, seq_len, dim] -> [batch_size * heads, seq_len, dim // heads]
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
else:
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
if is_cross and self.place_in_unet in ("mid","down"):
# one line change
self.controller(attention_probs.detach(), is_cross, self.place_in_unet)
hidden_states = attn.batch_to_head_dim(hidden_states)
if self_subject_attention_mask is not None and self.controller.dift_feature is not None and sequence_length == 32**2:
injection_alpha = 0.8
threshold = 0.3
ft = self.controller.dift_feature
# For using big feature map
ft_width, ft_height=32, 32
# ft = nn.Upsample(size=(ft_height, ft_width), mode='bilinear')(ft)
_hidden_states = hidden_states.detach().clone()
width, height = int(sequence_length**0.5), int(sequence_length**0.5)
_hidden_states = _hidden_states.permute(0, 2, 1).view(batch_size, dim, height, width)
raw_hidden_states = _hidden_states.clone()
index_list = [0,1,2,0,1,2]
for batch_index in range(midpoint):
select_index = index_list[batch_index]
reverse_select_index =index_list[batch_index + 1:batch_index+midpoint]
src_ft = ft[select_index].unsqueeze(0)
trg_ft = ft[reverse_select_index] # N, C, H, W
num_channel = ft.size(1)
trg_vec = trg_ft.view(midpoint-1, num_channel, -1)
trg_vec = F.normalize(trg_vec, dim=2) # N, C, HW
_injection_mask = mask_with_otsu_pytorch(self_subject_attention_mask[select_index])
# _injection_mask = _injection_mask.unsqueeze(0).unsqueeze(0)
# _injection_mask = F.interpolate(_injection_mask.to(query.device), size=(height, width), mode='bilinear', align_corners=False)
# _injection_mask = _injection_mask.squeeze(0).squeeze(0)
y_coords, x_coords = torch.meshgrid(torch.arange(height).to(query.device), torch.arange(width).to(query.device), indexing='ij')
y_coords = y_coords.flatten()
x_coords = x_coords.flatten()
valid_positions = _injection_mask[y_coords, x_coords] != 0
y_coords = y_coords[valid_positions]
x_coords = x_coords[valid_positions]
if len(y_coords) == 0:
continue
y_factors = (ft_height * y_coords / height).long()
x_factors = (ft_width * x_coords / width).long()
src_vecs = src_ft[0, :, y_factors, x_factors].view(len(y_coords), num_channel)
src_vecs = F.normalize(src_vecs, dim=1)
# TODO: looks like it should be calculated before inference.
cos_maps = torch.einsum('ij,ajk->iak', src_vecs, trg_vec).view(len(y_coords), len(reverse_select_index), ft_height, ft_width)
# cos_maps = torch.matmul(src_vecs.unsqueeze(1), trg_vec).view(len(y_coords), len(reverse_select_index), ft_height, ft_width)
max_values, max_indices = cos_maps.view(len(y_coords), len(reverse_select_index), -1).max(dim=2)
max_y_coords = (max_indices // ft_width).long()
max_x_coords = (max_indices % ft_width).long()
max_coords = torch.stack((max_y_coords, max_x_coords), dim=-1)
valid_max_coords = max_values >= threshold
best_indices = max_values.argmax(dim=1)
for idx in range(len(y_coords)):
if valid_max_coords[idx].any():
best_index = best_indices[idx].item()
best_y, best_x = max_coords[idx, best_index]
best_y = best_y * height // ft_height
best_x = best_x * width // ft_width
trg_index = reverse_select_index[best_index]
curr_y, curr_x = y_coords[idx], x_coords[idx]
_hidden_states[select_index, :, curr_y, curr_x] = raw_hidden_states[trg_index, :, best_y, best_x]
_hidden_states[select_index + midpoint, :, curr_y, curr_x] = raw_hidden_states[trg_index + midpoint, :, best_y, best_x]
else:
curr_y, curr_x = y_coords[idx], x_coords[idx]
_hidden_states[select_index, :, curr_y, curr_x] = raw_hidden_states[select_index, :, curr_y, curr_x]
_hidden_states[select_index + midpoint, :, curr_y, curr_x] = raw_hidden_states[select_index + midpoint, :, curr_y, curr_x]
_hidden_states = _hidden_states.view(batch_size, dim, -1).permute(0, 2, 1)
hidden_states = _hidden_states * injection_alpha + hidden_states * (1 - injection_alpha)
del attention_mask
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
def create_controller(
prompts: List[str], cross_attention_kwargs: Dict, num_inference_steps: int, tokenizer, device, attn_res
) -> AttentionControl:
edit_type = cross_attention_kwargs.get("edit_type", None)
local_blend_words = cross_attention_kwargs.get("local_blend_words", None)
equalizer_words = cross_attention_kwargs.get("equalizer_words", None)
equalizer_strengths = cross_attention_kwargs.get("equalizer_strengths", None)
n_cross_replace = cross_attention_kwargs.get("n_cross_replace", 0.4)
n_self_replace = cross_attention_kwargs.get("n_self_replace", 0.4)
# only replace
if edit_type == "replace" and local_blend_words is None:
return AttentionReplace(
prompts, num_inference_steps, n_cross_replace, n_self_replace, tokenizer=tokenizer, device=device, attn_res=attn_res
)
# replace + localblend
if edit_type == "replace" and local_blend_words is not None:
lb = LocalBlend(prompts, local_blend_words, tokenizer=tokenizer, device=device, attn_res=attn_res)
return AttentionReplace(
prompts, num_inference_steps, n_cross_replace, n_self_replace, lb, tokenizer=tokenizer, device=device, attn_res=attn_res
)
# only refine
if edit_type == "refine" and local_blend_words is None:
return AttentionRefine(
prompts, num_inference_steps, n_cross_replace, n_self_replace, tokenizer=tokenizer, device=device, attn_res=attn_res
)
# refine + localblend
if edit_type == "refine" and local_blend_words is not None:
lb = LocalBlend(prompts, local_blend_words, tokenizer=tokenizer, device=device, attn_res=attn_res)
return AttentionRefine(
prompts, num_inference_steps, n_cross_replace, n_self_replace, lb, tokenizer=tokenizer, device=device, attn_res=attn_res
)
# only reweight
if edit_type == "reweight" and local_blend_words is None:
assert (
equalizer_words is not None and equalizer_strengths is not None
), "To use reweight edit, please specify equalizer_words and equalizer_strengths."
assert len(equalizer_words) == len(
equalizer_strengths
), "equalizer_words and equalizer_strengths must be of same length."
equalizer = get_equalizer(prompts[1], equalizer_words, equalizer_strengths, tokenizer=tokenizer)
return AttentionReweight(
prompts,
num_inference_steps,
n_cross_replace,
n_self_replace,
tokenizer=tokenizer,
device=device,
equalizer=equalizer,
attn_res=attn_res,
)
# reweight and localblend
if edit_type == "reweight" and local_blend_words:
assert (
equalizer_words is not None and equalizer_strengths is not None
), "To use reweight edit, please specify equalizer_words and equalizer_strengths."
assert len(equalizer_words) == len(
equalizer_strengths
), "equalizer_words and equalizer_strengths must be of same length."
equalizer = get_equalizer(prompts[1], equalizer_words, equalizer_strengths, tokenizer=tokenizer)
lb = LocalBlend(prompts, local_blend_words, tokenizer=tokenizer, device=device, attn_res=attn_res)
return AttentionReweight(
prompts,
num_inference_steps,
n_cross_replace,
n_self_replace,
tokenizer=tokenizer,
device=device,
equalizer=equalizer,
attn_res=attn_res,
local_blend=lb,
)
raise ValueError(f"Edit type {edit_type} not recognized. Use one of: replace, refine, reweight.")
@torch.no_grad()
def _up_sample_attn(x, fix_hw, method='bicubic'):
# type: (torch.Tensor, torch.Tensor, int, Literal['bicubic', 'conv']) -> torch.Tensor
# x shape: (heads, height * width, tokens)
"""
Up samples the attention map in x using interpolation to the maximum size of (64, 64), as assumed in the Stable
Diffusion model.
Args:
x (`torch.Tensor`): cross attention slice/map between the words and the tokens.
value (`torch.Tensor`): the value tensor.
method (`str`): the method to use; one of `'bicubic'` or `'conv'`.
Returns:
`torch.Tensor`: the up-sampled attention map of shape (tokens, 1, height, width).
"""
h_fix = w_fix = fix_hw
heads, seq, tokens = x.shape
x = x.permute(0, 2, 1)
h,w = int(seq**0.5), int(seq**0.5)
x = x.view(heads, tokens, h, w)
upsample_x = F.interpolate(x, size=(h_fix, w_fix), mode='bicubic')
upsample_x = upsample_x.view(heads,tokens, -1)
upsample_x = upsample_x.permute(0, 2, 1)
return upsample_x
class AttentionControl(abc.ABC):
def step_callback(self, x_t):
return x_t
def between_steps(self):
return
@property
def num_uncond_att_layers(self):
return 0
@abc.abstractmethod
def forward(self, attn, is_cross: bool, place_in_unet: str):
raise NotImplementedError
def __call__(self, attn, is_cross: bool, place_in_unet: str):
if self.cur_att_layer >= self.num_uncond_att_layers:
h = attn.shape[0]
attn[h // 2 :] = self.forward(attn[h // 2 :], is_cross, place_in_unet)
self.cur_att_layer += 1
if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers:
self.cur_att_layer = 0
self.cur_step += 1
self.between_steps()
return attn
def reset(self):
self.cur_step = 0
self.cur_att_layer = 0
def __init__(self, attn_res=None):
self.cur_step = 0
self.num_att_layers = -1
self.cur_att_layer = 0
self.attn_res = attn_res
class EmptyControl(AttentionControl):
def forward(self, attn, is_cross: bool, place_in_unet: str):
return attn
class AttentionStore(AttentionControl):
@staticmethod
def get_empty_store():
return {"down_cross": [], "mid_cross": [], "up_cross": [], "down_self": [], "mid_self": [], "up_self": []}
def forward(self, attn, is_cross: bool, place_in_unet: str):
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
if attn.shape[1] <= 32**2: # avoid memory overhead
self.step_store[key].append(attn)
return attn
def between_steps(self):
if len(self.attention_store) == 0:
self.attention_store = self.step_store
else:
for key in self.attention_store:
for i in range(len(self.attention_store[key])):
self.attention_store[key][i] += self.step_store[key][i]
self.step_store = self.get_empty_store()
def get_average_attention(self):
average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store}
return average_attention
def reset(self):
super(AttentionStore, self).reset()
self.step_store = self.get_empty_store()
self.attention_store = {}
def __init__(self, attn_res=None):
super(AttentionStore, self).__init__(attn_res)
self.step_store = self.get_empty_store()
self.attention_store = {}
class AttentionConsiStore(AttentionStore):
def __init__(self, attn_res=None, token_positions=-1):
super(AttentionConsiStore, self).__init__(attn_res)
self.token_positions = token_positions if token_positions <=76 else 76
class LocalBlend:
def __call__(self, x_t, attention_store):
# note that this code works on the latent level!
k = 1
# maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3] # These are the numbers because we want to take layers that are 256 x 256, I think this can be changed to something smarter...like, get all attentions where thesecond dim is self.attn_res[0] * self.attn_res[1] in up and down cross.
maps = [m for m in attention_store["down_cross"] + attention_store["mid_cross"] + attention_store["up_cross"] if m.shape[1] == self.attn_res[0] * self.attn_res[1]]
maps = [item.reshape(self.alpha_layers.shape[0], -1, 1, self.attn_res[0], self.attn_res[1], self.max_num_words) for item in maps]
maps = torch.cat(maps, dim=1)
maps = (maps * self.alpha_layers).sum(-1).mean(1) # since alpha_layers is all 0s except where we edit, the product zeroes out all but what we change. Then, the sum adds the values of the original and what we edit. Then, we average across dim=1, which is the number of layers.
mask = F.max_pool2d(maps, (k * 2 + 1, k * 2 + 1), (1, 1), padding=(k, k))
mask = F.interpolate(mask, size=(x_t.shape[2:]))
mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0]
mask = mask.gt(self.threshold)
mask = mask[:1] + mask[1:]
mask = mask.to(torch.float16)
x_t = x_t[:1] + mask * (x_t - x_t[:1]) # x_t[:1] is the original image. mask*(x_t - x_t[:1]) zeroes out the original image and removes the difference between the original and each image we are generating (mostly just one). Then, it applies the mask on the image. That is, it's only keeping the cells we want to generate.
return x_t
def __init__(
self, prompts: List[str], words: [List[List[str]]], tokenizer, device, threshold=0.3, attn_res=None
):
self.max_num_words = 77
self.attn_res = attn_res
alpha_layers = torch.zeros(len(prompts), 1, 1, 1, 1, self.max_num_words)
for i, (prompt, words_) in enumerate(zip(prompts, words)):
if isinstance(words_, str):
words_ = [words_]
for word in words_:
ind = get_word_inds(prompt, word, tokenizer)
alpha_layers[i, :, :, :, :, ind] = 1
self.alpha_layers = alpha_layers.to(device) # a one-hot vector where the 1s are the words we modify (source and target)
self.threshold = threshold
class AttentionControlEdit(AttentionStore, abc.ABC):
def step_callback(self, x_t):
if self.local_blend is not None:
x_t = self.local_blend(x_t, self.attention_store)
return x_t
def replace_self_attention(self, attn_base, att_replace):
if att_replace.shape[2] <= self.attn_res[0]**2:
return attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape)
else:
return att_replace
@abc.abstractmethod
def replace_cross_attention(self, attn_base, att_replace):
raise NotImplementedError
def forward(self, attn, is_cross: bool, place_in_unet: str):
super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet)
if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]):
h = attn.shape[0] // (self.batch_size)
attn = attn.reshape(self.batch_size, h, *attn.shape[1:])
attn_base, attn_replace = attn[0], attn[1:]
if is_cross:
alpha_words = self.cross_replace_alpha[self.cur_step]
attn_replace_new = (
self.replace_cross_attention(attn_base, attn_replace) * alpha_words
+ (1 - alpha_words) * attn_replace
)
attn[1:] = attn_replace_new
else:
attn[1:] = self.replace_self_attention(attn_base, attn_replace)
attn = attn.reshape(self.batch_size * h, *attn.shape[2:])
return attn
def __init__(
self,
prompts,
num_steps: int,
cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]],
self_replace_steps: Union[float, Tuple[float, float]],
local_blend: Optional[LocalBlend],
tokenizer,
device,
attn_res=None,
):
super(AttentionControlEdit, self).__init__(attn_res=attn_res)
# add tokenizer and device here
self.tokenizer = tokenizer
self.device = device
self.batch_size = len(prompts)
self.cross_replace_alpha = get_time_words_attention_alpha(
prompts, num_steps, cross_replace_steps, self.tokenizer
).to(self.device)
if isinstance(self_replace_steps, float):
self_replace_steps = 0, self_replace_steps
self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1])
self.local_blend = local_blend
class AttentionReplace(AttentionControlEdit):
def replace_cross_attention(self, attn_base, att_replace):
return torch.einsum("hpw,bwn->bhpn", attn_base, self.mapper)
def __init__(
self,
prompts,
num_steps: int,
cross_replace_steps: float,
self_replace_steps: float,
local_blend: Optional[LocalBlend] = None,
tokenizer=None,
device=None,
attn_res=None,
):
super(AttentionReplace, self).__init__(
prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend, tokenizer, device, attn_res
)
self.mapper = get_replacement_mapper(prompts, self.tokenizer).to(self.device)
class AttentionRefine(AttentionControlEdit):
def replace_cross_attention(self, attn_base, att_replace):
attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3)
attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas)
return attn_replace
def __init__(
self,
prompts,
num_steps: int,
cross_replace_steps: float,
self_replace_steps: float,
local_blend: Optional[LocalBlend] = None,
tokenizer=None,
device=None,
attn_res=None
):
super(AttentionRefine, self).__init__(
prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend, tokenizer, device, attn_res
)
self.mapper, alphas = get_refinement_mapper(prompts, self.tokenizer)
self.mapper, alphas = self.mapper.to(self.device), alphas.to(self.device)
self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1])
class AttentionReweight(AttentionControlEdit):
def replace_cross_attention(self, attn_base, att_replace):
if self.prev_controller is not None:
attn_base = self.prev_controller.replace_cross_attention(attn_base, att_replace)
attn_replace = attn_base[None, :, :, :] * self.equalizer[:, None, None, :]
return attn_replace
def __init__(
self,
prompts,
num_steps: int,
cross_replace_steps: float,
self_replace_steps: float,
equalizer,
local_blend: Optional[LocalBlend] = None,
controller: Optional[AttentionControlEdit] = None,
tokenizer=None,
device=None,
attn_res=None,
):
super(AttentionReweight, self).__init__(
prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend, tokenizer, device, attn_res
)
self.equalizer = equalizer.to(self.device)
self.prev_controller = controller
### util functions for all Edits
def update_alpha_time_word(
alpha, bounds: Union[float, Tuple[float, float]], prompt_ind: int, word_inds: Optional[torch.Tensor] = None
):
if isinstance(bounds, float):
bounds = 0, bounds
start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0])
if word_inds is None:
word_inds = torch.arange(alpha.shape[2])
alpha[:start, prompt_ind, word_inds] = 0
alpha[start:end, prompt_ind, word_inds] = 1
alpha[end:, prompt_ind, word_inds] = 0
return alpha
def get_time_words_attention_alpha(
prompts, num_steps, cross_replace_steps: Union[float, Dict[str, Tuple[float, float]]], tokenizer, max_num_words=77
):
if not isinstance(cross_replace_steps, dict):
cross_replace_steps = {"default_": cross_replace_steps}
if "default_" not in cross_replace_steps:
cross_replace_steps["default_"] = (0.0, 1.0)
alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words)
for i in range(len(prompts) - 1):
alpha_time_words = update_alpha_time_word(alpha_time_words, cross_replace_steps["default_"], i)
for key, item in cross_replace_steps.items():
if key != "default_":
inds = [get_word_inds(prompts[i], key, tokenizer) for i in range(1, len(prompts))]
for i, ind in enumerate(inds):
if len(ind) > 0:
alpha_time_words = update_alpha_time_word(alpha_time_words, item, i, ind)
alpha_time_words = alpha_time_words.reshape(num_steps + 1, len(prompts) - 1, 1, 1, max_num_words)
return alpha_time_words
### util functions for LocalBlend and ReplacementEdit
def get_word_inds(text: str, word_place: int, tokenizer):
split_text = text.split(" ")
if isinstance(word_place, str):
word_place = [i for i, word in enumerate(split_text) if word_place == word]
elif isinstance(word_place, int):
word_place = [word_place]
out = []
if len(word_place) > 0:
words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1]
cur_len, ptr = 0, 0
for i in range(len(words_encode)):
cur_len += len(words_encode[i])
if ptr in word_place:
out.append(i + 1)
if cur_len >= len(split_text[ptr]):
ptr += 1
cur_len = 0
return np.array(out)
### util functions for ReplacementEdit
def get_replacement_mapper_(x: str, y: str, tokenizer, max_len=77):
words_x = x.split(" ")
words_y = y.split(" ")
if len(words_x) != len(words_y):
raise ValueError(
f"attention replacement edit can only be applied on prompts with the same length"
f" but prompt A has {len(words_x)} words and prompt B has {len(words_y)} words."
)
inds_replace = [i for i in range(len(words_y)) if words_y[i] != words_x[i]]
inds_source = [get_word_inds(x, i, tokenizer) for i in inds_replace]
inds_target = [get_word_inds(y, i, tokenizer) for i in inds_replace]
mapper = np.zeros((max_len, max_len))
i = j = 0
cur_inds = 0
while i < max_len and j < max_len:
if cur_inds < len(inds_source) and inds_source[cur_inds][0] == i:
inds_source_, inds_target_ = inds_source[cur_inds], inds_target[cur_inds]
if len(inds_source_) == len(inds_target_):
mapper[inds_source_, inds_target_] = 1
else:
ratio = 1 / len(inds_target_)
for i_t in inds_target_:
mapper[inds_source_, i_t] = ratio
cur_inds += 1
i += len(inds_source_)
j += len(inds_target_)
elif cur_inds < len(inds_source):
mapper[i, j] = 1
i += 1
j += 1
else:
mapper[j, j] = 1
i += 1
j += 1
# return torch.from_numpy(mapper).float()
return torch.from_numpy(mapper).to(torch.float16)
def get_replacement_mapper(prompts, tokenizer, max_len=77):
x_seq = prompts[0]
mappers = []
for i in range(1, len(prompts)):
mapper = get_replacement_mapper_(x_seq, prompts[i], tokenizer, max_len)
mappers.append(mapper)
return torch.stack(mappers)
### util functions for ReweightEdit
def get_equalizer(
text: str, word_select: Union[int, Tuple[int, ...]], values: Union[List[float], Tuple[float, ...]], tokenizer
):
if isinstance(word_select, (int, str)):
word_select = (word_select,)
equalizer = torch.ones(len(values), 77)
values = torch.tensor(values, dtype=torch.float32)
for i, word in enumerate(word_select):
inds = get_word_inds(text, word, tokenizer)
equalizer[:, inds] = torch.FloatTensor(values[i])
return equalizer
### util functions for RefinementEdit
class ScoreParams:
def __init__(self, gap, match, mismatch):
self.gap = gap
self.match = match
self.mismatch = mismatch
def mis_match_char(self, x, y):
if x != y:
return self.mismatch
else:
return self.match
def get_matrix(size_x, size_y, gap):
matrix = np.zeros((size_x + 1, size_y + 1), dtype=np.int32)
matrix[0, 1:] = (np.arange(size_y) + 1) * gap
matrix[1:, 0] = (np.arange(size_x) + 1) * gap
return matrix
def get_traceback_matrix(size_x, size_y):
matrix = np.zeros((size_x + 1, size_y + 1), dtype=np.int32)
matrix[0, 1:] = 1
matrix[1:, 0] = 2
matrix[0, 0] = 4
return matrix
def global_align(x, y, score):
matrix = get_matrix(len(x), len(y), score.gap)
trace_back = get_traceback_matrix(len(x), len(y))
for i in range(1, len(x) + 1):
for j in range(1, len(y) + 1):
left = matrix[i, j - 1] + score.gap
up = matrix[i - 1, j] + score.gap
diag = matrix[i - 1, j - 1] + score.mis_match_char(x[i - 1], y[j - 1])
matrix[i, j] = max(left, up, diag)
if matrix[i, j] == left:
trace_back[i, j] = 1
elif matrix[i, j] == up:
trace_back[i, j] = 2
else:
trace_back[i, j] = 3
return matrix, trace_back
def get_aligned_sequences(x, y, trace_back):
x_seq = []
y_seq = []
i = len(x)
j = len(y)
mapper_y_to_x = []
while i > 0 or j > 0:
if trace_back[i, j] == 3:
x_seq.append(x[i - 1])
y_seq.append(y[j - 1])
i = i - 1
j = j - 1
mapper_y_to_x.append((j, i))
elif trace_back[i][j] == 1:
x_seq.append("-")
y_seq.append(y[j - 1])
j = j - 1
mapper_y_to_x.append((j, -1))
elif trace_back[i][j] == 2:
x_seq.append(x[i - 1])
y_seq.append("-")
i = i - 1
elif trace_back[i][j] == 4:
break
mapper_y_to_x.reverse()
return x_seq, y_seq, torch.tensor(mapper_y_to_x, dtype=torch.int64)
def get_mapper(x: str, y: str, tokenizer, max_len=77):
x_seq = tokenizer.encode(x)
y_seq = tokenizer.encode(y)
score = ScoreParams(0, 1, -1)
matrix, trace_back = global_align(x_seq, y_seq, score)
mapper_base = get_aligned_sequences(x_seq, y_seq, trace_back)[-1]
alphas = torch.ones(max_len)
alphas[: mapper_base.shape[0]] = mapper_base[:, 1].ne(-1).float()
mapper = torch.zeros(max_len, dtype=torch.int64)
mapper[: mapper_base.shape[0]] = mapper_base[:, 1]
mapper[mapper_base.shape[0] :] = len(y_seq) + torch.arange(max_len - len(y_seq))
return mapper, alphas
def get_refinement_mapper(prompts, tokenizer, max_len=77):
x_seq = prompts[0]
mappers, alphas = [], []
for i in range(1, len(prompts)):
mapper, alpha = get_mapper(x_seq, prompts[i], tokenizer, max_len)
mappers.append(mapper)
alphas.append(alpha)
return torch.stack(mappers), torch.stack(alphas)
# Normalize the last two dimensions
def normalize_last_two_dims(tensor):
# Min and max values along the last two dimensions for each channel
min_val = tensor.amin(dim=(-1, -2), keepdim=True)
max_val = tensor.amax(dim=(-1, -2), keepdim=True)
# Normalize the tensor
normalized_tensor = (tensor - min_val) / (max_val - min_val + 1e-9) # Adding epsilon to avoid division by zero
return normalized_tensor
def _aggregate_attention_ostu_mask(attention_store: AttentionStore,
res: int,
batch_size: int,
from_where: List[str],
is_cross: bool,
) -> torch.Tensor:
""" Aggregates the attention across the different layers and heads at the specified resolution. """
out = []
token_pos = attention_store.token_positions
attention_maps = attention_store.get_average_attention()
num_pixels = res ** 2
for location in from_where:
for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]:
if (item is not None) and item.shape[1] == num_pixels:
cross_maps = item.reshape(batch_size, -1, res, res, item.shape[-1])
out.append(cross_maps)
out = torch.cat(out, dim=1)
out = out.sum(1) / out.shape[1]
out = out[:,:,:,token_pos]
norm_out = normalize_last_two_dims(out)
norm_out = torch.unbind(norm_out, dim=0)
norm_out = list(norm_out) # uncond + cond
return norm_out
def aggregate_attention(attention_store: AttentionStore,
res: int,
prompts: List[str],
from_where: List[str],
is_cross: bool,
select: int) -> torch.Tensor:
""" Aggregates the attention across the different layers and heads at the specified resolution. """
out = []
attention_maps = attention_store.get_average_attention()
num_pixels = res ** 2
for location in from_where:
for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]:
if item.shape[1] == num_pixels:
cross_maps = item.reshape(len(prompts), -1, res, res, item.shape[-1])[select]
out.append(cross_maps)
out = torch.cat(out, dim=0)
out = out.sum(0) / out.shape[0]
return out.cpu()
def show_cross_attention(attention_store: AttentionStore, tokenizer, prompts: list[str], res: int, from_where: List[str], select: int = 0, display: bool = False):
tokens = tokenizer.encode(prompts[select])
decoder = tokenizer.decode
attention_maps = aggregate_attention(attention_store=attention_store, res=res, from_where=from_where, is_cross=True, select=select)
images = []
for i in range(len(tokens)):
image = attention_maps[:, :, i]
image = (image - image.min())/(image.max()-image.min())
image = 255 * image
image = image.unsqueeze(-1).expand(*image.shape, 3)
image = image.cpu().numpy().astype(np.uint8)
image = np.array(Image.fromarray(image).resize((256, 256)))
image = text_under_image(image, decoder(int(tokens[i])))
images.append(image)
if display:
view_images(np.stack(images, axis=0), display_image=display)
else:
return view_images(np.stack(images, axis=0), display_image=display)