diff --git a/TestCases/aeroelastic/aeroelastic_NACA64A010.cfg b/TestCases/aeroelastic/aeroelastic_NACA64A010.cfg index afd6443d396..b8703b602c3 100644 --- a/TestCases/aeroelastic/aeroelastic_NACA64A010.cfg +++ b/TestCases/aeroelastic/aeroelastic_NACA64A010.cfg @@ -299,8 +299,6 @@ SURFACE_FILENAME= surface_flow % Writing solution file frequency for physical time steps (dual time) OUTPUT_WRT_FREQ= 1000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (TIME_ITER, INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG_ON_SURFACE, PLUNGE, PITCH) diff --git a/TestCases/cont_adj_euler/naca0012/inv_NACA0012.cfg b/TestCases/cont_adj_euler/naca0012/inv_NACA0012.cfg index 4fcd59453d7..0fcb610c0ef 100644 --- a/TestCases/cont_adj_euler/naca0012/inv_NACA0012.cfg +++ b/TestCases/cont_adj_euler/naca0012/inv_NACA0012.cfg @@ -300,8 +300,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT = (INNER_ITER, RMS_ADJ_DENSITY, RMS_ADJ_ENERGY, SENS_GEO, SENS_AOA, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) diff --git a/TestCases/cont_adj_euler/naca0012/inv_NACA0012_FD.cfg b/TestCases/cont_adj_euler/naca0012/inv_NACA0012_FD.cfg index 4fd77c79213..10906c14d29 100644 --- a/TestCases/cont_adj_euler/naca0012/inv_NACA0012_FD.cfg +++ b/TestCases/cont_adj_euler/naca0012/inv_NACA0012_FD.cfg @@ -298,8 +298,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % History output HISTORY_OUTPUT=(ITER, RMS_RES, AERO_COEFF, D_AERO_COEFF) diff --git a/TestCases/cont_adj_euler/naca0012/inv_NACA0012_discadj.cfg b/TestCases/cont_adj_euler/naca0012/inv_NACA0012_discadj.cfg index f595697cf18..8290c764a76 100644 --- a/TestCases/cont_adj_euler/naca0012/inv_NACA0012_discadj.cfg +++ b/TestCases/cont_adj_euler/naca0012/inv_NACA0012_discadj.cfg @@ -260,8 +260,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (INNER_ITER, RMS_ADJ_DENSITY, RMS_ADJ_ENERGY, SENS_PRESS, SENS_AOA) diff --git a/TestCases/cont_adj_euler/oneram6/inv_ONERAM6.cfg b/TestCases/cont_adj_euler/oneram6/inv_ONERAM6.cfg index 0d5e4c50d17..069cb9b8e43 100644 --- a/TestCases/cont_adj_euler/oneram6/inv_ONERAM6.cfg +++ b/TestCases/cont_adj_euler/oneram6/inv_ONERAM6.cfg @@ -264,8 +264,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution frequency OUTPUT_WRT_FREQ= 100 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % Screen output SCREEN_OUTPUT = (INNER_ITER, RMS_ADJ_DENSITY, RMS_ADJ_ENERGY, SENS_GEO, SENS_AOA) % diff --git a/TestCases/cont_adj_euler/wedge/inv_wedge_ROE.cfg b/TestCases/cont_adj_euler/wedge/inv_wedge_ROE.cfg index bdb6fca480a..e89fdde7af4 100644 --- a/TestCases/cont_adj_euler/wedge/inv_wedge_ROE.cfg +++ b/TestCases/cont_adj_euler/wedge/inv_wedge_ROE.cfg @@ -256,8 +256,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % Screen output SCREEN_OUTPUT = (INNER_ITER, RMS_ADJ_DENSITY, RMS_ADJ_ENERGY, SENS_GEO, SENS_AOA) % diff --git a/TestCases/cont_adj_euler/wedge/inv_wedge_ROE_multiobj.cfg b/TestCases/cont_adj_euler/wedge/inv_wedge_ROE_multiobj.cfg index 5c2cbbbb445..6f239abfc0d 100644 --- a/TestCases/cont_adj_euler/wedge/inv_wedge_ROE_multiobj.cfg +++ b/TestCases/cont_adj_euler/wedge/inv_wedge_ROE_multiobj.cfg @@ -273,8 +273,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Read binary restart files READ_BINARY_RESTART = NO diff --git a/TestCases/cont_adj_navierstokes/cylinder/lam_cylinder.cfg b/TestCases/cont_adj_navierstokes/cylinder/lam_cylinder.cfg index 9d618997ad6..37f5025faaa 100644 --- a/TestCases/cont_adj_navierstokes/cylinder/lam_cylinder.cfg +++ b/TestCases/cont_adj_navierstokes/cylinder/lam_cylinder.cfg @@ -267,8 +267,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 1000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (INNER_ITER, RMS_ADJ_DENSITY, RMS_ADJ_ENERGY, SENS_GEO, SENS_AOA) diff --git a/TestCases/cont_adj_navierstokes/naca0012_sub/lam_NACA0012.cfg b/TestCases/cont_adj_navierstokes/naca0012_sub/lam_NACA0012.cfg index 0a4d1362015..5fe84b06ea2 100644 --- a/TestCases/cont_adj_navierstokes/naca0012_sub/lam_NACA0012.cfg +++ b/TestCases/cont_adj_navierstokes/naca0012_sub/lam_NACA0012.cfg @@ -258,8 +258,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 5000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % Screen output SCREEN_OUTPUT= (INNER_ITER, RMS_ADJ_DENSITY, RMS_ADJ_ENERGY, SENS_GEO, SENS_AOA) % diff --git a/TestCases/cont_adj_navierstokes/naca0012_trans/lam_NACA0012.cfg b/TestCases/cont_adj_navierstokes/naca0012_trans/lam_NACA0012.cfg index e948ae9127e..09c7397d9cd 100644 --- a/TestCases/cont_adj_navierstokes/naca0012_trans/lam_NACA0012.cfg +++ b/TestCases/cont_adj_navierstokes/naca0012_trans/lam_NACA0012.cfg @@ -269,8 +269,7 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 10000 % -% Writing convergence history frequency -WRT_CON_FREQ= 5 +SCREEN_WRT_FREQ_INNER= 5 % Screen output SCREEN_OUTPUT= (INNER_ITER, RMS_ADJ_DENSITY, RMS_ADJ_ENERGY, SENS_GEO, SENS_AOA) % diff --git a/TestCases/cont_adj_rans/naca0012/turb_nasa.cfg b/TestCases/cont_adj_rans/naca0012/turb_nasa.cfg index 26525e6aea8..30e430ca873 100644 --- a/TestCases/cont_adj_rans/naca0012/turb_nasa.cfg +++ b/TestCases/cont_adj_rans/naca0012/turb_nasa.cfg @@ -324,8 +324,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 1000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (INNER_ITER, RMS_ADJ_DENSITY, RMS_ADJ_ENERGY, SENS_GEO, SENS_AOA) diff --git a/TestCases/cont_adj_rans/naca0012/turb_nasa_binary.cfg b/TestCases/cont_adj_rans/naca0012/turb_nasa_binary.cfg index fa19df70749..3cac5c811a3 100644 --- a/TestCases/cont_adj_rans/naca0012/turb_nasa_binary.cfg +++ b/TestCases/cont_adj_rans/naca0012/turb_nasa_binary.cfg @@ -324,8 +324,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 1000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (INNER_ITER, RMS_ADJ_DENSITY, RMS_ADJ_ENERGY, SENS_GEO, SENS_AOA) diff --git a/TestCases/cont_adj_rans/oneram6/turb_ONERAM6.cfg b/TestCases/cont_adj_rans/oneram6/turb_ONERAM6.cfg index 5694df226c4..a852cdd890a 100644 --- a/TestCases/cont_adj_rans/oneram6/turb_ONERAM6.cfg +++ b/TestCases/cont_adj_rans/oneram6/turb_ONERAM6.cfg @@ -327,8 +327,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 1000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % --------------------- OPTIMAL SHAPE DESIGN DEFINITION -----------------------% % diff --git a/TestCases/cont_adj_rans/rae2822/turb_SA_RAE2822.cfg b/TestCases/cont_adj_rans/rae2822/turb_SA_RAE2822.cfg index 3df2d66ec00..6da745ce09f 100644 --- a/TestCases/cont_adj_rans/rae2822/turb_SA_RAE2822.cfg +++ b/TestCases/cont_adj_rans/rae2822/turb_SA_RAE2822.cfg @@ -244,8 +244,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 1000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (INNER_ITER, RMS_ADJ_DENSITY, RMS_ADJ_ENERGY, SENS_GEO, SENS_AOA) diff --git a/TestCases/control_surface/inv_ONERAM6_moving.cfg b/TestCases/control_surface/inv_ONERAM6_moving.cfg index 426c5e0d288..f40cce87989 100644 --- a/TestCases/control_surface/inv_ONERAM6_moving.cfg +++ b/TestCases/control_surface/inv_ONERAM6_moving.cfg @@ -253,8 +253,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution frequency OUTPUT_WRT_FREQ= 50 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % ------------------------ GRID DEFORMATION PARAMETERS ------------------------% % diff --git a/TestCases/control_surface/inv_ONERAM6_setting.cfg b/TestCases/control_surface/inv_ONERAM6_setting.cfg index 32d3eca3c72..09835ea7f1a 100644 --- a/TestCases/control_surface/inv_ONERAM6_setting.cfg +++ b/TestCases/control_surface/inv_ONERAM6_setting.cfg @@ -253,8 +253,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution frequency OUTPUT_WRT_FREQ= 50 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % ------------------------ GRID DEFORMATION PARAMETERS ------------------------% % diff --git a/TestCases/coupled_cht/comp_2d/flow_cylinder.cfg b/TestCases/coupled_cht/comp_2d/flow_cylinder.cfg index ed35d6f2117..c15f371c0d4 100644 --- a/TestCases/coupled_cht/comp_2d/flow_cylinder.cfg +++ b/TestCases/coupled_cht/comp_2d/flow_cylinder.cfg @@ -179,8 +179,6 @@ SURFACE_FILENAME= surface_flow % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % ------------------------ GRID DEFORMATION PARAMETERS ------------------------% % diff --git a/TestCases/coupled_cht/comp_2d/solid_cylinder1.cfg b/TestCases/coupled_cht/comp_2d/solid_cylinder1.cfg index e2f58fb0322..06325af0a5e 100644 --- a/TestCases/coupled_cht/comp_2d/solid_cylinder1.cfg +++ b/TestCases/coupled_cht/comp_2d/solid_cylinder1.cfg @@ -158,8 +158,6 @@ SURFACE_FILENAME= surface_flow % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % ------------------------ GRID DEFORMATION PARAMETERS ------------------------% % diff --git a/TestCases/coupled_cht/comp_2d/solid_cylinder2.cfg b/TestCases/coupled_cht/comp_2d/solid_cylinder2.cfg index 0601901e3e3..05756d60471 100644 --- a/TestCases/coupled_cht/comp_2d/solid_cylinder2.cfg +++ b/TestCases/coupled_cht/comp_2d/solid_cylinder2.cfg @@ -168,8 +168,6 @@ SURFACE_FILENAME= surface_flow % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % ------------------------ GRID DEFORMATION PARAMETERS ------------------------% % diff --git a/TestCases/coupled_cht/comp_2d/solid_cylinder3.cfg b/TestCases/coupled_cht/comp_2d/solid_cylinder3.cfg index 28611030d3a..22ee243c51b 100644 --- a/TestCases/coupled_cht/comp_2d/solid_cylinder3.cfg +++ b/TestCases/coupled_cht/comp_2d/solid_cylinder3.cfg @@ -168,8 +168,6 @@ SURFACE_FILENAME= surface_flow % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % ------------------------ GRID DEFORMATION PARAMETERS ------------------------% % diff --git a/TestCases/coupled_cht/disc_adj_incomp_2d/flow_cylinder.cfg b/TestCases/coupled_cht/disc_adj_incomp_2d/flow_cylinder.cfg index 4726a6803f8..aba99dce051 100644 --- a/TestCases/coupled_cht/disc_adj_incomp_2d/flow_cylinder.cfg +++ b/TestCases/coupled_cht/disc_adj_incomp_2d/flow_cylinder.cfg @@ -233,8 +233,6 @@ SURFACE_FILENAME= surface_flow % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % ------------------------ GRID DEFORMATION PARAMETERS ------------------------% % diff --git a/TestCases/coupled_cht/disc_adj_incomp_2d/solid_cylinder1.cfg b/TestCases/coupled_cht/disc_adj_incomp_2d/solid_cylinder1.cfg index ee0d2740c69..5e45bd1daad 100644 --- a/TestCases/coupled_cht/disc_adj_incomp_2d/solid_cylinder1.cfg +++ b/TestCases/coupled_cht/disc_adj_incomp_2d/solid_cylinder1.cfg @@ -158,8 +158,6 @@ SURFACE_FILENAME= surface_flow % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % ------------------------ GRID DEFORMATION PARAMETERS ------------------------% % diff --git a/TestCases/coupled_cht/disc_adj_incomp_2d/solid_cylinder2.cfg b/TestCases/coupled_cht/disc_adj_incomp_2d/solid_cylinder2.cfg index 9e21cfa196c..6dcccea2606 100644 --- a/TestCases/coupled_cht/disc_adj_incomp_2d/solid_cylinder2.cfg +++ b/TestCases/coupled_cht/disc_adj_incomp_2d/solid_cylinder2.cfg @@ -168,8 +168,6 @@ SURFACE_FILENAME= surface_flow % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % ------------------------ GRID DEFORMATION PARAMETERS ------------------------% % diff --git a/TestCases/coupled_cht/disc_adj_incomp_2d/solid_cylinder3.cfg b/TestCases/coupled_cht/disc_adj_incomp_2d/solid_cylinder3.cfg index 8e9102b2862..47d064accbc 100644 --- a/TestCases/coupled_cht/disc_adj_incomp_2d/solid_cylinder3.cfg +++ b/TestCases/coupled_cht/disc_adj_incomp_2d/solid_cylinder3.cfg @@ -168,8 +168,6 @@ SURFACE_FILENAME= surface_flow % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % ------------------------ GRID DEFORMATION PARAMETERS ------------------------% % diff --git a/TestCases/coupled_cht/incomp_2d/flow_cylinder.cfg b/TestCases/coupled_cht/incomp_2d/flow_cylinder.cfg index 865b610b19d..c587d6907b3 100644 --- a/TestCases/coupled_cht/incomp_2d/flow_cylinder.cfg +++ b/TestCases/coupled_cht/incomp_2d/flow_cylinder.cfg @@ -230,8 +230,6 @@ SURFACE_FILENAME= surface_flow % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % ------------------------ GRID DEFORMATION PARAMETERS ------------------------% % diff --git a/TestCases/coupled_cht/incomp_2d/solid_cylinder1.cfg b/TestCases/coupled_cht/incomp_2d/solid_cylinder1.cfg index 2288c7b5065..df303ab245e 100644 --- a/TestCases/coupled_cht/incomp_2d/solid_cylinder1.cfg +++ b/TestCases/coupled_cht/incomp_2d/solid_cylinder1.cfg @@ -158,8 +158,6 @@ SURFACE_FILENAME= surface_flow % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % ------------------------ GRID DEFORMATION PARAMETERS ------------------------% % diff --git a/TestCases/coupled_cht/incomp_2d/solid_cylinder2.cfg b/TestCases/coupled_cht/incomp_2d/solid_cylinder2.cfg index 98657c06b8b..3f2a7a5d5f6 100644 --- a/TestCases/coupled_cht/incomp_2d/solid_cylinder2.cfg +++ b/TestCases/coupled_cht/incomp_2d/solid_cylinder2.cfg @@ -168,8 +168,6 @@ SURFACE_FILENAME= surface_flow % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % ------------------------ GRID DEFORMATION PARAMETERS ------------------------% % diff --git a/TestCases/coupled_cht/incomp_2d/solid_cylinder3.cfg b/TestCases/coupled_cht/incomp_2d/solid_cylinder3.cfg index 20b38610f6c..3e33cbe1a98 100644 --- a/TestCases/coupled_cht/incomp_2d/solid_cylinder3.cfg +++ b/TestCases/coupled_cht/incomp_2d/solid_cylinder3.cfg @@ -168,8 +168,6 @@ SURFACE_FILENAME= surface_flow % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % ------------------------ GRID DEFORMATION PARAMETERS ------------------------% % diff --git a/TestCases/coupled_cht/incomp_2d_unsteady/flow_cylinder.cfg b/TestCases/coupled_cht/incomp_2d_unsteady/flow_cylinder.cfg index 42dcd30fe3c..75f4590a481 100644 --- a/TestCases/coupled_cht/incomp_2d_unsteady/flow_cylinder.cfg +++ b/TestCases/coupled_cht/incomp_2d_unsteady/flow_cylinder.cfg @@ -217,8 +217,6 @@ SURFACE_FILENAME= surface_flow % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % ------------------------ GRID DEFORMATION PARAMETERS ------------------------% % diff --git a/TestCases/coupled_cht/incomp_2d_unsteady/solid_cylinder1.cfg b/TestCases/coupled_cht/incomp_2d_unsteady/solid_cylinder1.cfg index ece56f67a53..c424aca3245 100644 --- a/TestCases/coupled_cht/incomp_2d_unsteady/solid_cylinder1.cfg +++ b/TestCases/coupled_cht/incomp_2d_unsteady/solid_cylinder1.cfg @@ -145,8 +145,6 @@ SURFACE_FILENAME= surface_flow % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % ------------------------ GRID DEFORMATION PARAMETERS ------------------------% % diff --git a/TestCases/coupled_cht/incomp_2d_unsteady/solid_cylinder2.cfg b/TestCases/coupled_cht/incomp_2d_unsteady/solid_cylinder2.cfg index 9000d42cadb..379a6eaf380 100644 --- a/TestCases/coupled_cht/incomp_2d_unsteady/solid_cylinder2.cfg +++ b/TestCases/coupled_cht/incomp_2d_unsteady/solid_cylinder2.cfg @@ -146,8 +146,6 @@ SURFACE_FILENAME= surface_flow % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % ------------------------ GRID DEFORMATION PARAMETERS ------------------------% % diff --git a/TestCases/coupled_cht/incomp_2d_unsteady/solid_cylinder3.cfg b/TestCases/coupled_cht/incomp_2d_unsteady/solid_cylinder3.cfg index c1c6c4efe71..439aa0f77e4 100644 --- a/TestCases/coupled_cht/incomp_2d_unsteady/solid_cylinder3.cfg +++ b/TestCases/coupled_cht/incomp_2d_unsteady/solid_cylinder3.cfg @@ -146,8 +146,6 @@ SURFACE_FILENAME= surface_flow % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % ------------------------ GRID DEFORMATION PARAMETERS ------------------------% % diff --git a/TestCases/ddes/flatplate/ddes_flatplate.cfg b/TestCases/ddes/flatplate/ddes_flatplate.cfg index 6ec464819fe..c1359d277f8 100644 --- a/TestCases/ddes/flatplate/ddes_flatplate.cfg +++ b/TestCases/ddes/flatplate/ddes_flatplate.cfg @@ -226,8 +226,6 @@ SURFACE_FILENAME= surface_flow % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Writing solution file frequency for physical time steps (dual time) OUTPUT_WRT_FREQ= 1000 diff --git a/TestCases/deformation/brick_hex/def_brick_hex.cfg b/TestCases/deformation/brick_hex/def_brick_hex.cfg index ccd7047baa0..62d9ce5443c 100755 --- a/TestCases/deformation/brick_hex/def_brick_hex.cfg +++ b/TestCases/deformation/brick_hex/def_brick_hex.cfg @@ -252,5 +252,3 @@ SURFACE_FILENAME= surface_flow % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/deformation/brick_hex_rans/def_brick_hex_rans.cfg b/TestCases/deformation/brick_hex_rans/def_brick_hex_rans.cfg index 4df99bf8da6..23034d0e7b1 100755 --- a/TestCases/deformation/brick_hex_rans/def_brick_hex_rans.cfg +++ b/TestCases/deformation/brick_hex_rans/def_brick_hex_rans.cfg @@ -255,6 +255,4 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/deformation/brick_prism/def_brick_prism.cfg b/TestCases/deformation/brick_prism/def_brick_prism.cfg index 98ab38faca5..b88702e06f3 100755 --- a/TestCases/deformation/brick_prism/def_brick_prism.cfg +++ b/TestCases/deformation/brick_prism/def_brick_prism.cfg @@ -252,6 +252,4 @@ SURFACE_FILENAME= surface_flow % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/deformation/brick_prism_rans/def_brick_prism_rans.cfg b/TestCases/deformation/brick_prism_rans/def_brick_prism_rans.cfg index b69d66ae387..633a5058ce7 100755 --- a/TestCases/deformation/brick_prism_rans/def_brick_prism_rans.cfg +++ b/TestCases/deformation/brick_prism_rans/def_brick_prism_rans.cfg @@ -252,6 +252,4 @@ SURFACE_FILENAME= surface_flow % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/deformation/brick_pyra/def_brick_pyra.cfg b/TestCases/deformation/brick_pyra/def_brick_pyra.cfg index 28069c80a00..d7ad3ec4ad9 100755 --- a/TestCases/deformation/brick_pyra/def_brick_pyra.cfg +++ b/TestCases/deformation/brick_pyra/def_brick_pyra.cfg @@ -255,6 +255,4 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/deformation/brick_tets/def_brick_tets.cfg b/TestCases/deformation/brick_tets/def_brick_tets.cfg index 4166b65d1a0..7e282788c47 100755 --- a/TestCases/deformation/brick_tets/def_brick_tets.cfg +++ b/TestCases/deformation/brick_tets/def_brick_tets.cfg @@ -255,6 +255,4 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/deformation/cylindrical_ffd/def_cylindrical.cfg b/TestCases/deformation/cylindrical_ffd/def_cylindrical.cfg index e35a04aaa8e..f884b3e5733 100644 --- a/TestCases/deformation/cylindrical_ffd/def_cylindrical.cfg +++ b/TestCases/deformation/cylindrical_ffd/def_cylindrical.cfg @@ -303,6 +303,4 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency for physical time steps (dual time) OUTPUT_WRT_FREQ= 1 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % diff --git a/TestCases/deformation/naca0012/def_NACA0012.cfg b/TestCases/deformation/naca0012/def_NACA0012.cfg index e22c8234573..bbb7c279db4 100644 --- a/TestCases/deformation/naca0012/def_NACA0012.cfg +++ b/TestCases/deformation/naca0012/def_NACA0012.cfg @@ -299,8 +299,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % --------------------- OPTIMAL SHAPE DESIGN DEFINITION -----------------------% % diff --git a/TestCases/deformation/naca0012/surface_file_NACA0012.cfg b/TestCases/deformation/naca0012/surface_file_NACA0012.cfg index d08787346a2..bd457e87a81 100644 --- a/TestCases/deformation/naca0012/surface_file_NACA0012.cfg +++ b/TestCases/deformation/naca0012/surface_file_NACA0012.cfg @@ -307,8 +307,6 @@ SURFACE_FILENAME= surface_flow % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % --------------------- OPTIMAL SHAPE DESIGN DEFINITION -----------------------% % diff --git a/TestCases/deformation/naca4412/def_NACA4412.cfg b/TestCases/deformation/naca4412/def_NACA4412.cfg index 9c0dbf36087..31cd1910edc 100644 --- a/TestCases/deformation/naca4412/def_NACA4412.cfg +++ b/TestCases/deformation/naca4412/def_NACA4412.cfg @@ -283,8 +283,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 1000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % ----------------------- DESIGN VARIABLE PARAMETERS --------------------------% % diff --git a/TestCases/deformation/rae2822/def_RAE2822.cfg b/TestCases/deformation/rae2822/def_RAE2822.cfg index b7c97ef502b..1d0393af24a 100644 --- a/TestCases/deformation/rae2822/def_RAE2822.cfg +++ b/TestCases/deformation/rae2822/def_RAE2822.cfg @@ -258,8 +258,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 OUTPUT_FILES=(PARAVIEW_ASCII) % ----------------------- DESIGN VARIABLE PARAMETERS --------------------------% % diff --git a/TestCases/deformation/spherical_ffd/def_spherical.cfg b/TestCases/deformation/spherical_ffd/def_spherical.cfg index 6856fba4efe..960eb443445 100644 --- a/TestCases/deformation/spherical_ffd/def_spherical.cfg +++ b/TestCases/deformation/spherical_ffd/def_spherical.cfg @@ -306,6 +306,4 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 1500 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % diff --git a/TestCases/deformation/spherical_ffd/def_spherical_bspline.cfg b/TestCases/deformation/spherical_ffd/def_spherical_bspline.cfg index c0d85a80ab3..73778d3d005 100644 --- a/TestCases/deformation/spherical_ffd/def_spherical_bspline.cfg +++ b/TestCases/deformation/spherical_ffd/def_spherical_bspline.cfg @@ -313,6 +313,4 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 1500 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % diff --git a/TestCases/disc_adj_euler/arina2k/Arina2KRS.cfg b/TestCases/disc_adj_euler/arina2k/Arina2KRS.cfg index 299fe3c515d..085f32cd787 100644 --- a/TestCases/disc_adj_euler/arina2k/Arina2KRS.cfg +++ b/TestCases/disc_adj_euler/arina2k/Arina2KRS.cfg @@ -542,8 +542,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 1000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Read binary restart files (YES, NO) READ_BINARY_RESTART= YES diff --git a/TestCases/disc_adj_euler/cylinder3D/inv_cylinder3D.cfg b/TestCases/disc_adj_euler/cylinder3D/inv_cylinder3D.cfg index 5729872f07d..94f131b4a9b 100644 --- a/TestCases/disc_adj_euler/cylinder3D/inv_cylinder3D.cfg +++ b/TestCases/disc_adj_euler/cylinder3D/inv_cylinder3D.cfg @@ -323,8 +323,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 2525 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Read binary restart files (YES, NO) READ_BINARY_RESTART= YES diff --git a/TestCases/disc_adj_euler/naca0012_pitching/inv_NACA0012_pitching.cfg b/TestCases/disc_adj_euler/naca0012_pitching/inv_NACA0012_pitching.cfg index 29c83946f18..92aa8555a1e 100644 --- a/TestCases/disc_adj_euler/naca0012_pitching/inv_NACA0012_pitching.cfg +++ b/TestCases/disc_adj_euler/naca0012_pitching/inv_NACA0012_pitching.cfg @@ -331,8 +331,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency for physical time steps (dual time) OUTPUT_WRT_FREQ= 1 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % Optimization design variables, separated by semicolons % FFD_CONTROL_POINT (Y) diff --git a/TestCases/disc_adj_euler/naca0012_pitching_def/inv_NACA0012_pitching_deform.cfg b/TestCases/disc_adj_euler/naca0012_pitching_def/inv_NACA0012_pitching_deform.cfg index 56108516fef..31a8143368c 100644 --- a/TestCases/disc_adj_euler/naca0012_pitching_def/inv_NACA0012_pitching_deform.cfg +++ b/TestCases/disc_adj_euler/naca0012_pitching_def/inv_NACA0012_pitching_deform.cfg @@ -125,4 +125,3 @@ GRAD_OBJFUNC_FILENAME= of_grad.dat SURFACE_FILENAME= surface_flow SURFACE_ADJ_FILENAME= surface_adjoint OUTPUT_WRT_FREQ= 1 -WRT_CON_FREQ= 1 diff --git a/TestCases/disc_adj_euler/naca0012_pitching_def/inv_NACA0012_pitching_deform_ad.cfg b/TestCases/disc_adj_euler/naca0012_pitching_def/inv_NACA0012_pitching_deform_ad.cfg index c4bc484baa8..6ea04d7b1aa 100644 --- a/TestCases/disc_adj_euler/naca0012_pitching_def/inv_NACA0012_pitching_deform_ad.cfg +++ b/TestCases/disc_adj_euler/naca0012_pitching_def/inv_NACA0012_pitching_deform_ad.cfg @@ -125,4 +125,3 @@ GRAD_OBJFUNC_FILENAME= of_grad.dat SURFACE_FILENAME= surface_flow SURFACE_ADJ_FILENAME= surface_adjoint OUTPUT_WRT_FREQ= 1 -WRT_CON_FREQ= 1 diff --git a/TestCases/disc_adj_euler/oneram6/inv_ONERAM6.cfg b/TestCases/disc_adj_euler/oneram6/inv_ONERAM6.cfg index 08949d6717a..fe9144c425c 100644 --- a/TestCases/disc_adj_euler/oneram6/inv_ONERAM6.cfg +++ b/TestCases/disc_adj_euler/oneram6/inv_ONERAM6.cfg @@ -245,5 +245,3 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 100 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/disc_adj_fea/configAD_fem.cfg b/TestCases/disc_adj_fea/configAD_fem.cfg index 6556ec28ec8..fed9bccb378 100644 --- a/TestCases/disc_adj_fea/configAD_fem.cfg +++ b/TestCases/disc_adj_fea/configAD_fem.cfg @@ -55,7 +55,6 @@ RESTART_ADJ_FILENAME= restart_adj.dat MESH_FORMAT= SU2 TABULAR_FORMAT= CSV -WRT_CON_FREQ= 1 OUTPUT_WRT_FREQ= 1 LINEAR_SOLVER= CONJUGATE_GRADIENT diff --git a/TestCases/disc_adj_fsi/Airfoil_2d/configFEA.cfg b/TestCases/disc_adj_fsi/Airfoil_2d/configFEA.cfg index 1ae1bf41d98..30dbb2dc246 100755 --- a/TestCases/disc_adj_fsi/Airfoil_2d/configFEA.cfg +++ b/TestCases/disc_adj_fsi/Airfoil_2d/configFEA.cfg @@ -52,6 +52,6 @@ TABULAR_FORMAT= CSV VOLUME_FILENAME= solid VOLUME_ADJ_FILENAME= adjoint_solid % -WRT_CON_FREQ= 10 +SCREEN_WRT_FREQ_INNER= 10 CONV_FILENAME= history diff --git a/TestCases/disc_adj_fsi/Airfoil_2d/configFlow.cfg b/TestCases/disc_adj_fsi/Airfoil_2d/configFlow.cfg index 3c777ec1927..ed655c6d94f 100755 --- a/TestCases/disc_adj_fsi/Airfoil_2d/configFlow.cfg +++ b/TestCases/disc_adj_fsi/Airfoil_2d/configFlow.cfg @@ -98,6 +98,6 @@ VOLUME_ADJ_FILENAME= adjoint_fluid SURFACE_FILENAME= surface_fluid SURFACE_ADJ_FILENAME= adjoint_surface_fluid % -WRT_CON_FREQ= 10 +SCREEN_WRT_FREQ_INNER= 10 CONV_FILENAME= history diff --git a/TestCases/disc_adj_fsi/configFEA.cfg b/TestCases/disc_adj_fsi/configFEA.cfg index 87efce8fa2c..fac3f471cd7 100644 --- a/TestCases/disc_adj_fsi/configFEA.cfg +++ b/TestCases/disc_adj_fsi/configFEA.cfg @@ -46,7 +46,6 @@ INNER_ITER= 5 MARKER_CLAMPED = ( Clamped_Right, Clamped_Left ) MARKER_FLUID_LOAD= ( LowerWallS, UpperWallS) -WRT_CON_FREQ= 1 LINEAR_SOLVER= CONJUGATE_GRADIENT LINEAR_SOLVER_PREC= JACOBI diff --git a/TestCases/disc_adj_fsi/configFlow.cfg b/TestCases/disc_adj_fsi/configFlow.cfg index 7d68e6e820d..edcb19ec274 100644 --- a/TestCases/disc_adj_fsi/configFlow.cfg +++ b/TestCases/disc_adj_fsi/configFlow.cfg @@ -48,7 +48,6 @@ MARKER_MONITORING= ( UpperWall, LowerWall, Wall) DEFORM_MESH= YES MARKER_DEFORM_MESH= ( UpperWall, LowerWall ) -WRT_CON_FREQ= 1 DEFORM_STIFFNESS_TYPE = INVERSE_VOLUME DEFORM_POISSONS_RATIO = 1e6 diff --git a/TestCases/disc_adj_heat/disc_adj_heat.cfg b/TestCases/disc_adj_heat/disc_adj_heat.cfg index 6231ffb97ae..18d16c8fe31 100644 --- a/TestCases/disc_adj_heat/disc_adj_heat.cfg +++ b/TestCases/disc_adj_heat/disc_adj_heat.cfg @@ -223,7 +223,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint OUTPUT_WRT_FREQ= 1 -WRT_CON_FREQ= 1 % Screen output SCREEN_OUTPUT= (INNER_ITER, RMS_ADJ_PRESSURE, RMS_ADJ_NU_TILDE, RMS_ADJ_HEAT, SENS_VEL_IN, SENS_PRESS_OUT) diff --git a/TestCases/disc_adj_incomp_euler/naca0012/incomp_NACA0012_disc.cfg b/TestCases/disc_adj_incomp_euler/naca0012/incomp_NACA0012_disc.cfg index efdf4c44ce4..1ead1ba7148 100644 --- a/TestCases/disc_adj_incomp_euler/naca0012/incomp_NACA0012_disc.cfg +++ b/TestCases/disc_adj_incomp_euler/naca0012/incomp_NACA0012_disc.cfg @@ -227,8 +227,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT = (INNER_ITER, RMS_ADJ_PRESSURE, RMS_ADJ_VELOCITY-X, SENS_PRESS, SENS_AOA) diff --git a/TestCases/disc_adj_incomp_navierstokes/cylinder/heated_cylinder.cfg b/TestCases/disc_adj_incomp_navierstokes/cylinder/heated_cylinder.cfg index ae7027fb283..d45b1714d36 100644 --- a/TestCases/disc_adj_incomp_navierstokes/cylinder/heated_cylinder.cfg +++ b/TestCases/disc_adj_incomp_navierstokes/cylinder/heated_cylinder.cfg @@ -308,8 +308,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (INNER_ITER, RMS_ADJ_PRESSURE, RMS_ADJ_TEMPERATURE, SENS_PRESS, SENS_AOA) diff --git a/TestCases/disc_adj_incomp_rans/naca0012/turb_naca0012_sa.cfg b/TestCases/disc_adj_incomp_rans/naca0012/turb_naca0012_sa.cfg index 1ea2e4e4dc9..acfbec543e6 100755 --- a/TestCases/disc_adj_incomp_rans/naca0012/turb_naca0012_sa.cfg +++ b/TestCases/disc_adj_incomp_rans/naca0012/turb_naca0012_sa.cfg @@ -285,8 +285,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (INNER_ITER, RMS_ADJ_PRESSURE, RMS_ADJ_NU_TILDE, SENS_PRESS, SENS_AOA) diff --git a/TestCases/disc_adj_incomp_rans/naca0012/turb_naca0012_sst.cfg b/TestCases/disc_adj_incomp_rans/naca0012/turb_naca0012_sst.cfg index 3e9800ed285..4b8f64c3f04 100755 --- a/TestCases/disc_adj_incomp_rans/naca0012/turb_naca0012_sst.cfg +++ b/TestCases/disc_adj_incomp_rans/naca0012/turb_naca0012_sst.cfg @@ -285,8 +285,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (INNER_ITER, RMS_ADJ_PRESSURE, RMS_ADJ_TKE, RMS_ADJ_DISSIPATION, SENS_PRESS, SENS_AOA) diff --git a/TestCases/disc_adj_rans/cylinder/cylinder.cfg b/TestCases/disc_adj_rans/cylinder/cylinder.cfg index 7840ff70715..fc98978e6c1 100644 --- a/TestCases/disc_adj_rans/cylinder/cylinder.cfg +++ b/TestCases/disc_adj_rans/cylinder/cylinder.cfg @@ -260,8 +260,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency for physical time steps (dual time) OUTPUT_WRT_FREQ= 1 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (TIME_ITER, INNER_ITER, RMS_ADJ_DENSITY, RMS_ADJ_ENERGY, SENS_PRESS, SENS_AOA) diff --git a/TestCases/disc_adj_rans/cylinder_DT_1ST/cylinder.cfg b/TestCases/disc_adj_rans/cylinder_DT_1ST/cylinder.cfg index 8bea6f6c857..18c88595faf 100644 --- a/TestCases/disc_adj_rans/cylinder_DT_1ST/cylinder.cfg +++ b/TestCases/disc_adj_rans/cylinder_DT_1ST/cylinder.cfg @@ -261,8 +261,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency for physical time steps (dual time) OUTPUT_WRT_FREQ= 1 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (TIME_ITER, INNER_ITER, RMS_ADJ_DENSITY, RMS_ADJ_ENERGY, SENS_PRESS, SENS_AOA) diff --git a/TestCases/disc_adj_rans/naca0012/naca0012.cfg b/TestCases/disc_adj_rans/naca0012/naca0012.cfg index 4d437516f92..ba349d65187 100644 --- a/TestCases/disc_adj_rans/naca0012/naca0012.cfg +++ b/TestCases/disc_adj_rans/naca0012/naca0012.cfg @@ -170,7 +170,6 @@ VOLUME_FILENAME= flow SURFACE_FILENAME= surface_flow % Writing solution file frequency OUTPUT_WRT_FREQ= 1 -WRT_CON_FREQ= 1 % % ----------------------- DESIGN VARIABLE PARAMETERS --------------------------% % diff --git a/TestCases/disc_adj_rans/naca0012/turb_NACA0012_sa.cfg b/TestCases/disc_adj_rans/naca0012/turb_NACA0012_sa.cfg index 258f70f2ede..d6f881b02d3 100644 --- a/TestCases/disc_adj_rans/naca0012/turb_NACA0012_sa.cfg +++ b/TestCases/disc_adj_rans/naca0012/turb_NACA0012_sa.cfg @@ -242,8 +242,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 1000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT = (INNER_ITER, RMS_ADJ_DENSITY, RMS_ADJ_NU_TILDE, SENS_PRESS, SENS_AOA RMS_DENSITY RMS_NU_TILDE LIFT DRAG) diff --git a/TestCases/disc_adj_rans/naca0012/turb_NACA0012_sst.cfg b/TestCases/disc_adj_rans/naca0012/turb_NACA0012_sst.cfg index 2942d909672..fb672dde358 100644 --- a/TestCases/disc_adj_rans/naca0012/turb_NACA0012_sst.cfg +++ b/TestCases/disc_adj_rans/naca0012/turb_NACA0012_sst.cfg @@ -242,8 +242,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 1000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT = (INNER_ITER, RMS_ADJ_DENSITY, RMS_ADJ_TKE, SENS_PRESS, SENS_AOA RMS_DENSITY RMS_TKE LIFT DRAG) diff --git a/TestCases/disc_adj_turbomachinery/transonic_stator_2D/transonic_stator.cfg b/TestCases/disc_adj_turbomachinery/transonic_stator_2D/transonic_stator.cfg index fbb0910c422..6e9e98762bd 100644 --- a/TestCases/disc_adj_turbomachinery/transonic_stator_2D/transonic_stator.cfg +++ b/TestCases/disc_adj_turbomachinery/transonic_stator_2D/transonic_stator.cfg @@ -424,7 +424,5 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 500 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % SCREEN_OUTPUT=(INNER_ITER, RMS_ADJ_DENSITY, RMS_ADJ_TKE) diff --git a/TestCases/euler/CRM/inv_CRM_JST.cfg b/TestCases/euler/CRM/inv_CRM_JST.cfg index 5fe227fb36f..5fc00757ee2 100644 --- a/TestCases/euler/CRM/inv_CRM_JST.cfg +++ b/TestCases/euler/CRM/inv_CRM_JST.cfg @@ -245,5 +245,3 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution frequency OUTPUT_WRT_FREQ= 50 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/euler/biparabolic/BIPARABOLIC.cfg b/TestCases/euler/biparabolic/BIPARABOLIC.cfg index 0f77bcae6bb..2d99d1a3333 100644 --- a/TestCases/euler/biparabolic/BIPARABOLIC.cfg +++ b/TestCases/euler/biparabolic/BIPARABOLIC.cfg @@ -274,5 +274,3 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 100 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/euler/bluntbody/blunt.cfg b/TestCases/euler/bluntbody/blunt.cfg index 9c276bf9cc0..7070027f3a3 100644 --- a/TestCases/euler/bluntbody/blunt.cfg +++ b/TestCases/euler/bluntbody/blunt.cfg @@ -202,8 +202,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) diff --git a/TestCases/euler/channel/inv_channel.cfg b/TestCases/euler/channel/inv_channel.cfg index 78785bb4ebc..9697b70c17a 100644 --- a/TestCases/euler/channel/inv_channel.cfg +++ b/TestCases/euler/channel/inv_channel.cfg @@ -224,5 +224,3 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/euler/channel/inv_channel_RK.cfg b/TestCases/euler/channel/inv_channel_RK.cfg index 3114f358516..3b057f7ec5a 100644 --- a/TestCases/euler/channel/inv_channel_RK.cfg +++ b/TestCases/euler/channel/inv_channel_RK.cfg @@ -217,8 +217,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT = (INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) diff --git a/TestCases/euler/naca0012/inv_NACA0012.cfg b/TestCases/euler/naca0012/inv_NACA0012.cfg index c20681b9148..89dd10e29c5 100644 --- a/TestCases/euler/naca0012/inv_NACA0012.cfg +++ b/TestCases/euler/naca0012/inv_NACA0012.cfg @@ -286,8 +286,6 @@ SURFACE_FILENAME= surface_flow % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output fields SCREEN_OUTPUT = (INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) diff --git a/TestCases/euler/naca0012/inv_NACA0012_Roe.cfg b/TestCases/euler/naca0012/inv_NACA0012_Roe.cfg index 096e97b079f..bd55aa33fb7 100644 --- a/TestCases/euler/naca0012/inv_NACA0012_Roe.cfg +++ b/TestCases/euler/naca0012/inv_NACA0012_Roe.cfg @@ -204,8 +204,6 @@ SURFACE_FILENAME= surface_flow % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output fields SCREEN_OUTPUT = (INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) diff --git a/TestCases/euler/oneram6/inv_ONERAM6.cfg b/TestCases/euler/oneram6/inv_ONERAM6.cfg index 94baf6948ab..f48acd756a4 100644 --- a/TestCases/euler/oneram6/inv_ONERAM6.cfg +++ b/TestCases/euler/oneram6/inv_ONERAM6.cfg @@ -267,8 +267,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution frequency OUTPUT_WRT_FREQ= 100 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output fields SCREEN_OUTPUT = (INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) diff --git a/TestCases/euler/wedge/inv_wedge_HLLC.cfg b/TestCases/euler/wedge/inv_wedge_HLLC.cfg index 37f0adc19f0..8c6a6e9baec 100644 --- a/TestCases/euler/wedge/inv_wedge_HLLC.cfg +++ b/TestCases/euler/wedge/inv_wedge_HLLC.cfg @@ -217,8 +217,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output fields SCREEN_OUTPUT = (INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) diff --git a/TestCases/fea_fsi/DynBeam_2d/configBeam_2d.cfg b/TestCases/fea_fsi/DynBeam_2d/configBeam_2d.cfg index 5374c27ef14..f46a6ded3b2 100644 --- a/TestCases/fea_fsi/DynBeam_2d/configBeam_2d.cfg +++ b/TestCases/fea_fsi/DynBeam_2d/configBeam_2d.cfg @@ -40,5 +40,4 @@ VOLUME_FILENAME= beam RESTART_FILENAME= restart_beam.dat SOLUTION_FILENAME= solution_beam.dat OUTPUT_WRT_FREQ= 1 -WRT_CON_FREQ= 1 OUTPUT_FILES= (RESTART_ASCII) diff --git a/TestCases/fea_fsi/SquareCyl_Beam/config.cfg b/TestCases/fea_fsi/SquareCyl_Beam/config.cfg index 2a862f67ebe..be65f753f06 100644 --- a/TestCases/fea_fsi/SquareCyl_Beam/config.cfg +++ b/TestCases/fea_fsi/SquareCyl_Beam/config.cfg @@ -249,8 +249,6 @@ RESTART_FILENAME= restart_flow.dat % Output file restart flow RESTART_STRUCTURE_FILENAME= restart_beam.dat % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Writing solution file frequency for physical time steps (dual time) OUTPUT_WRT_FREQ= 1 diff --git a/TestCases/fea_fsi/StatBeam_3d/configBeam_3d.cfg b/TestCases/fea_fsi/StatBeam_3d/configBeam_3d.cfg index 0250c5ab0ce..154cfd476ca 100644 --- a/TestCases/fea_fsi/StatBeam_3d/configBeam_3d.cfg +++ b/TestCases/fea_fsi/StatBeam_3d/configBeam_3d.cfg @@ -30,5 +30,4 @@ VOLUME_FILENAME= beam RESTART_FILENAME= restart_beam.dat SOLUTION_FILENAME= restart_beam.dat OUTPUT_WRT_FREQ= 1 -WRT_CON_FREQ= 1 INNER_ITER=1 diff --git a/TestCases/fea_fsi/WallChannel_2d/configFEA.cfg b/TestCases/fea_fsi/WallChannel_2d/configFEA.cfg index 89f356b0bfd..d2234449cdc 100644 --- a/TestCases/fea_fsi/WallChannel_2d/configFEA.cfg +++ b/TestCases/fea_fsi/WallChannel_2d/configFEA.cfg @@ -45,7 +45,6 @@ MESH_FILENAME= meshFEA.su2 MESH_FORMAT= SU2 -WRT_CON_FREQ= 1 OUTPUT_WRT_FREQ= 1 VOLUME_FILENAME= results_wall diff --git a/TestCases/fea_fsi/WallChannel_2d/configFlow.cfg b/TestCases/fea_fsi/WallChannel_2d/configFlow.cfg index 2c13f0a3912..1257c794f95 100644 --- a/TestCases/fea_fsi/WallChannel_2d/configFlow.cfg +++ b/TestCases/fea_fsi/WallChannel_2d/configFlow.cfg @@ -73,7 +73,6 @@ DEFORM_POISSONS_RATIO= 1e6 MESH_FORMAT= SU2 TABULAR_FORMAT= CSV -WRT_CON_FREQ= 1 OUTPUT_WRT_FREQ= 1 VOLUME_FILENAME= results_flow diff --git a/TestCases/fea_fsi/dyn_fsi/configFEA.cfg b/TestCases/fea_fsi/dyn_fsi/configFEA.cfg index 7518402e09c..0423a1d488d 100644 --- a/TestCases/fea_fsi/dyn_fsi/configFEA.cfg +++ b/TestCases/fea_fsi/dyn_fsi/configFEA.cfg @@ -46,7 +46,7 @@ MESH_FILENAME= meshFEA.su2 MESH_FORMAT= SU2 TABULAR_FORMAT= CSV -WRT_CON_FREQ= 100 +SCREEN_WRT_FREQ_INNER= 100 OUTPUT_WRT_FREQ= 100 VOLUME_FILENAME= results_wall diff --git a/TestCases/fea_fsi/dyn_fsi/configFlow.cfg b/TestCases/fea_fsi/dyn_fsi/configFlow.cfg index dd096114490..978c66da2ed 100644 --- a/TestCases/fea_fsi/dyn_fsi/configFlow.cfg +++ b/TestCases/fea_fsi/dyn_fsi/configFlow.cfg @@ -70,7 +70,7 @@ DEFORM_STIFFNESS_TYPE= INVERSE_VOLUME MESH_FORMAT= SU2 TABULAR_FORMAT= CSV -WRT_CON_FREQ= 100 +SCREEN_WRT_FREQ_INNER= 100 OUTPUT_WRT_FREQ= 100 VOLUME_FILENAME= results_flow diff --git a/TestCases/fea_fsi/stat_fsi/configFEA.cfg b/TestCases/fea_fsi/stat_fsi/configFEA.cfg index 9ba8444d788..8f291ad93f5 100755 --- a/TestCases/fea_fsi/stat_fsi/configFEA.cfg +++ b/TestCases/fea_fsi/stat_fsi/configFEA.cfg @@ -85,4 +85,3 @@ MARKER_FLUID_LOAD = (wallS) MESH_FORMAT= SU2 TABULAR_FORMAT= CSV -WRT_CON_FREQ= 1 diff --git a/TestCases/fea_fsi/stat_fsi/configFlow.cfg b/TestCases/fea_fsi/stat_fsi/configFlow.cfg index 56fce83338f..9d430682d2a 100755 --- a/TestCases/fea_fsi/stat_fsi/configFlow.cfg +++ b/TestCases/fea_fsi/stat_fsi/configFlow.cfg @@ -129,4 +129,3 @@ CONV_CAUCHY_EPS= 1E-5 MESH_FORMAT= SU2 TABULAR_FORMAT= CSV -WRT_CON_FREQ= 1 diff --git a/TestCases/fea_topology/config.cfg b/TestCases/fea_topology/config.cfg index f8885f5bd7a..8294fe3eb2b 100644 --- a/TestCases/fea_topology/config.cfg +++ b/TestCases/fea_topology/config.cfg @@ -94,7 +94,6 @@ MESH_FILENAME= mesh.su2 MESH_FORMAT= SU2 TABULAR_FORMAT= CSV OUTPUT_WRT_FREQ= 9999 -WRT_CON_FREQ= 1 SOLUTION_ADJ_FILENAME= solution_adj.dat RESTART_ADJ_FILENAME= restart_adj.dat diff --git a/TestCases/fixed_cl/naca0012/inv_NACA0012.cfg b/TestCases/fixed_cl/naca0012/inv_NACA0012.cfg index eb732d6f738..d9070a047b0 100644 --- a/TestCases/fixed_cl/naca0012/inv_NACA0012.cfg +++ b/TestCases/fixed_cl/naca0012/inv_NACA0012.cfg @@ -300,8 +300,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output fields SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) diff --git a/TestCases/fixed_cl/naca0012/inv_NACA0012_ContAdj.cfg b/TestCases/fixed_cl/naca0012/inv_NACA0012_ContAdj.cfg index fa433a42306..bf990b8de42 100644 --- a/TestCases/fixed_cl/naca0012/inv_NACA0012_ContAdj.cfg +++ b/TestCases/fixed_cl/naca0012/inv_NACA0012_ContAdj.cfg @@ -305,8 +305,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % Screen output SCREEN_OUTPUT = (INNER_ITER, RMS_ADJ_DENSITY, RMS_ADJ_ENERGY, SENS_GEO, SENS_AOA) diff --git a/TestCases/gust/inv_gust_NACA0012.cfg b/TestCases/gust/inv_gust_NACA0012.cfg index 44c362f033d..00703c7a844 100644 --- a/TestCases/gust/inv_gust_NACA0012.cfg +++ b/TestCases/gust/inv_gust_NACA0012.cfg @@ -265,8 +265,6 @@ SURFACE_FILENAME= surface_flow % Writing solution file frequency for physical time steps (dual time) OUTPUT_WRT_FREQ= 1000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (TIME_ITER, INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) diff --git a/TestCases/harmonic_balance/HB.cfg b/TestCases/harmonic_balance/HB.cfg index 12843d55f07..4df2859f0c1 100644 --- a/TestCases/harmonic_balance/HB.cfg +++ b/TestCases/harmonic_balance/HB.cfg @@ -318,8 +318,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 500 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % --------------------- OPTIMAL SHAPE DESIGN DEFINITION -----------------------% % diff --git a/TestCases/harmonic_balance/hb_rans_preconditioning/davis.cfg b/TestCases/harmonic_balance/hb_rans_preconditioning/davis.cfg index 97731db68ff..35297c1883c 100644 --- a/TestCases/harmonic_balance/hb_rans_preconditioning/davis.cfg +++ b/TestCases/harmonic_balance/hb_rans_preconditioning/davis.cfg @@ -246,5 +246,3 @@ SURFACE_FILENAME= surface_flow % Writing solution file frequency OUTPUT_WRT_FREQ= 500 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/hom_euler/InviscidVortex/2D/Quad32X32_nPoly4/InviscidVortex.cfg b/TestCases/hom_euler/InviscidVortex/2D/Quad32X32_nPoly4/InviscidVortex.cfg index f84dbaa41fa..67729c0c401 100644 --- a/TestCases/hom_euler/InviscidVortex/2D/Quad32X32_nPoly4/InviscidVortex.cfg +++ b/TestCases/hom_euler/InviscidVortex/2D/Quad32X32_nPoly4/InviscidVortex.cfg @@ -1,190 +1,188 @@ -% -% Inviscid vortex test case: Make sure to compile the executable with the -% flag -DINVISCID_VORTEX to set the appropriate initial conditions. -% These conditions can be found in the file solver_direct_mean_fem.cpp, -% function CFEM_DG_EulerSolver::SetInitialCondition. -% -% -% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% -% -% Physical governing equations (EULER, NAVIER_STOKES, -% FEM_EULER, FEM_NAVIER_STOKES, -% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, -% POISSON_EQUATION) -SOLVER= FEM_EULER -% -% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) -MATH_PROBLEM= DIRECT -% -% Restart solution (NO, YES) -RESTART_SOL= NO -%RESTART_SOL= YES - -% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% -% -% Mach number (non-dimensional, based on the free-stream values) -MACH_NUMBER= 0.5 -% -% Angle of attack (degrees) -AoA= 0.0 -% -% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) -FREESTREAM_PRESSURE= 1.0 -% -% Free-stream temperature (273.15 K by default) -FREESTREAM_TEMPERATURE= 1.0 - -% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% -% -% Ratio of specific heats (1.4 (air), only for compressible flows) -GAMMA_VALUE= 1.4 -% -% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) -GAS_CONSTANT= 1.0 - -% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% -% -% Reference origin for moment computation -REF_ORIGIN_MOMENT_X = 0.00 -REF_ORIGIN_MOMENT_Y = 0.00 -REF_ORIGIN_MOMENT_Z = 0.00 -% -% Reference length for pitching, rolling, and yawing non-dimensional moment -REF_LENGTH_MOMENT= 1.0 -% -% Reference area for force coefficients (0 implies automatic calculation) -REF_AREA= 1.0 -% -% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, -% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) -REF_DIMENSIONALIZATION= DIMENSIONAL - -% ------------------------- UNSTEADY SIMULATION -------------------------------% -% -TIME_DOMAIN=YES -% -% Unsteady simulation (NO, TIME_STEPPING, DUAL_TIME_STEPPING-1ST_ORDER, -% DUAL_TIME_STEPPING-2ND_ORDER, TIME_SPECTRAL) -%TIME_MARCHING= NO -TIME_MARCHING= TIME_STEPPING -% -% Time Step for time accurate simulations (s) -- Only used when UNST_CFL_NUMBER = 0.0 -TIME_STEP= 2.0e-3 -% -% Total Physical Time for dual time stepping simulations (s) -MAX_TIME= 50.0 -% -% Unsteady Courant-Friedrichs-Lewy number of the finest grid -UNST_CFL_NUMBER= 0.0 - -% -------------------- BOUNDARY CONDITION DEFINITION --------------------------% -% -% Periodic boundary marker(s) (NONE = no marker) -% Format: ( periodic marker, donor marker, rotation_center_x, rotation_center_y, -% rotation_center_z, rotation_angle_x-axis, rotation_angle_y-axis, -% rotation_angle_z-axis, translation_x, translation_y, translation_z, ... ) -MARKER_PERIODIC= ( PeriodicBottom, PeriodicTop, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, PeriodicLeft, PeriodicRight, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0) - -% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% -% -% Courant-Friedrichs-Lewy condition of the finest grid -CFL_NUMBER= 0.2 -% -% Number of total iterations -EXT_ITER= 5000 -% -% Runge-Kutta alpha coefficients -%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5 , 1.0 ) -RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) - -% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% -% -% Convective numerical method (DG) -NUM_METHOD_FEM_FLOW= DG -% -% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) -RIEMANN_SOLVER_FEM= ROE -% -% Constant factor applied for quadrature with straight elements (2.0 by default) -QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 -%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 -% -% Constant factor applied for quadrature with curved elements (3.0 by default) -%QUADRATURE_FACTOR_CURVED_FEM = 3.0 -QUADRATURE_FACTOR_CURVED_FEM = 2.0 -% -% Time discretization (RUNGE-KUTTA_EXPLICIT) -TIME_DISCRE_FEM_FLOW= CLASSICAL_RK4_EXPLICIT -% -% Time discretization. Must be set equal to TIME_DISCRE_FEM_FLOW. -TIME_DISCRE_FLOW= CLASSICAL_RK4_EXPLICIT - -% --------------------------- CONVERGENCE PARAMETERS --------------------------% -% -% Convergence criteria (CAUCHY, RESIDUAL) -CONV_CRITERIA= RESIDUAL -% -% -% Min value of the residual (log10 of the residual) -CONV_RESIDUAL_MINVAL= -15 -% -% Start Cauchy criteria at iteration number -CONV_STARTITER= 10 -% -% Number of elements to apply the criteria -CONV_CAUCHY_ELEMS= 100 -% -% Epsilon to control the series convergence -CONV_CAUCHY_EPS= 1E-6 -% - -% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% -% Mesh input file -MESH_FILENAME= Quad32X32_nPoly4.su2 -% -% Mesh input file format (SU2, CGNS, NETCDF_ASCII) -MESH_FORMAT= SU2 -% -% Mesh output file -MESH_OUT_FILENAME= mesh_out.su2 -% -% Restart flow input file -%SOLUTION_FILENAME= solution_flow.dat -SOLUTION_FILENAME= SolInterpolFrom3rdOrder.dat -% -% Restart adjoint input file -SOLUTION_ADJ_FILENAME= solution_adj.dat -% -% Output tabular format (CSV, TECPLOT) -TABULAR_FORMAT= CSV -%TABULAR_FORMAT= CSV -% -% Output file convergence history (w/o extension) -CONV_FILENAME= history -% -% Output file restart flow -RESTART_FILENAME= restart_flow.dat -% -% Output file restart adjoint -RESTART_ADJ_FILENAME= restart_adj.dat -% -% Output file flow (w/o extension) variables -VOLUME_FILENAME= flow -% -% Output file adjoint (w/o extension) variables -VOLUME_ADJ_FILENAME= adjoint -% -% Output Objective function gradient (using continuous adjoint) -GRAD_OBJFUNC_FILENAME= of_grad.dat -% -% Output file surface flow coefficient (w/o extension) -SURFACE_FILENAME= surface_flow -% -% Output file surface adjoint coefficient (w/o extension) -SURFACE_ADJ_FILENAME= surface_adjoint -% -% Writing solution file frequency for physical time steps (dual time) -OUTPUT_WRT_FREQ= 40 -% -% Writing convergence history frequency -WRT_CON_FREQ= 1 +% +% Inviscid vortex test case: Make sure to compile the executable with the +% flag -DINVISCID_VORTEX to set the appropriate initial conditions. +% These conditions can be found in the file solver_direct_mean_fem.cpp, +% function CFEM_DG_EulerSolver::SetInitialCondition. +% +% +% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% +% +% Physical governing equations (EULER, NAVIER_STOKES, +% FEM_EULER, FEM_NAVIER_STOKES, +% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, +% POISSON_EQUATION) +SOLVER= FEM_EULER +% +% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) +MATH_PROBLEM= DIRECT +% +% Restart solution (NO, YES) +RESTART_SOL= NO +%RESTART_SOL= YES + +% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% +% +% Mach number (non-dimensional, based on the free-stream values) +MACH_NUMBER= 0.5 +% +% Angle of attack (degrees) +AoA= 0.0 +% +% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) +FREESTREAM_PRESSURE= 1.0 +% +% Free-stream temperature (273.15 K by default) +FREESTREAM_TEMPERATURE= 1.0 + +% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% +% +% Ratio of specific heats (1.4 (air), only for compressible flows) +GAMMA_VALUE= 1.4 +% +% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) +GAS_CONSTANT= 1.0 + +% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% +% +% Reference origin for moment computation +REF_ORIGIN_MOMENT_X = 0.00 +REF_ORIGIN_MOMENT_Y = 0.00 +REF_ORIGIN_MOMENT_Z = 0.00 +% +% Reference length for pitching, rolling, and yawing non-dimensional moment +REF_LENGTH_MOMENT= 1.0 +% +% Reference area for force coefficients (0 implies automatic calculation) +REF_AREA= 1.0 +% +% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, +% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) +REF_DIMENSIONALIZATION= DIMENSIONAL + +% ------------------------- UNSTEADY SIMULATION -------------------------------% +% +TIME_DOMAIN=YES +% +% Unsteady simulation (NO, TIME_STEPPING, DUAL_TIME_STEPPING-1ST_ORDER, +% DUAL_TIME_STEPPING-2ND_ORDER, TIME_SPECTRAL) +%TIME_MARCHING= NO +TIME_MARCHING= TIME_STEPPING +% +% Time Step for time accurate simulations (s) -- Only used when UNST_CFL_NUMBER = 0.0 +TIME_STEP= 2.0e-3 +% +% Total Physical Time for dual time stepping simulations (s) +MAX_TIME= 50.0 +% +% Unsteady Courant-Friedrichs-Lewy number of the finest grid +UNST_CFL_NUMBER= 0.0 + +% -------------------- BOUNDARY CONDITION DEFINITION --------------------------% +% +% Periodic boundary marker(s) (NONE = no marker) +% Format: ( periodic marker, donor marker, rotation_center_x, rotation_center_y, +% rotation_center_z, rotation_angle_x-axis, rotation_angle_y-axis, +% rotation_angle_z-axis, translation_x, translation_y, translation_z, ... ) +MARKER_PERIODIC= ( PeriodicBottom, PeriodicTop, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, PeriodicLeft, PeriodicRight, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0) + +% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% +% +% Courant-Friedrichs-Lewy condition of the finest grid +CFL_NUMBER= 0.2 +% +% Number of total iterations +EXT_ITER= 5000 +% +% Runge-Kutta alpha coefficients +%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5 , 1.0 ) +RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) + +% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% +% +% Convective numerical method (DG) +NUM_METHOD_FEM_FLOW= DG +% +% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) +RIEMANN_SOLVER_FEM= ROE +% +% Constant factor applied for quadrature with straight elements (2.0 by default) +QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 +%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 +% +% Constant factor applied for quadrature with curved elements (3.0 by default) +%QUADRATURE_FACTOR_CURVED_FEM = 3.0 +QUADRATURE_FACTOR_CURVED_FEM = 2.0 +% +% Time discretization (RUNGE-KUTTA_EXPLICIT) +TIME_DISCRE_FEM_FLOW= CLASSICAL_RK4_EXPLICIT +% +% Time discretization. Must be set equal to TIME_DISCRE_FEM_FLOW. +TIME_DISCRE_FLOW= CLASSICAL_RK4_EXPLICIT + +% --------------------------- CONVERGENCE PARAMETERS --------------------------% +% +% Convergence criteria (CAUCHY, RESIDUAL) +CONV_CRITERIA= RESIDUAL +% +% +% Min value of the residual (log10 of the residual) +CONV_RESIDUAL_MINVAL= -15 +% +% Start Cauchy criteria at iteration number +CONV_STARTITER= 10 +% +% Number of elements to apply the criteria +CONV_CAUCHY_ELEMS= 100 +% +% Epsilon to control the series convergence +CONV_CAUCHY_EPS= 1E-6 +% + +% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% +% Mesh input file +MESH_FILENAME= Quad32X32_nPoly4.su2 +% +% Mesh input file format (SU2, CGNS, NETCDF_ASCII) +MESH_FORMAT= SU2 +% +% Mesh output file +MESH_OUT_FILENAME= mesh_out.su2 +% +% Restart flow input file +%SOLUTION_FILENAME= solution_flow.dat +SOLUTION_FILENAME= SolInterpolFrom3rdOrder.dat +% +% Restart adjoint input file +SOLUTION_ADJ_FILENAME= solution_adj.dat +% +% Output tabular format (CSV, TECPLOT) +TABULAR_FORMAT= CSV +%TABULAR_FORMAT= CSV +% +% Output file convergence history (w/o extension) +CONV_FILENAME= history +% +% Output file restart flow +RESTART_FILENAME= restart_flow.dat +% +% Output file restart adjoint +RESTART_ADJ_FILENAME= restart_adj.dat +% +% Output file flow (w/o extension) variables +VOLUME_FILENAME= flow +% +% Output file adjoint (w/o extension) variables +VOLUME_ADJ_FILENAME= adjoint +% +% Output Objective function gradient (using continuous adjoint) +GRAD_OBJFUNC_FILENAME= of_grad.dat +% +% Output file surface flow coefficient (w/o extension) +SURFACE_FILENAME= surface_flow +% +% Output file surface adjoint coefficient (w/o extension) +SURFACE_ADJ_FILENAME= surface_adjoint +% +% Writing solution file frequency for physical time steps (dual time) +OUTPUT_WRT_FREQ= 40 +% diff --git a/TestCases/hom_euler/InviscidVortex/3D/nPoly2_Tets/InviscidVortex.cfg b/TestCases/hom_euler/InviscidVortex/3D/nPoly2_Tets/InviscidVortex.cfg index 591fe5b1e22..a413a2af4ce 100644 --- a/TestCases/hom_euler/InviscidVortex/3D/nPoly2_Tets/InviscidVortex.cfg +++ b/TestCases/hom_euler/InviscidVortex/3D/nPoly2_Tets/InviscidVortex.cfg @@ -1,189 +1,187 @@ -% -% Inviscid vortex test case: Make sure to compile the executable with the -% flag -DINVISCID_VORTEX to set the appropriate initial conditions. -% These conditions can be found in the file solver_direct_mean_fem.cpp, -% function CFEM_DG_EulerSolver::SetInitialCondition. -% -% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% -% -% Physical governing equations (EULER, NAVIER_STOKES, -% FEM_EULER, FEM_NAVIER_STOKES, -% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, -% POISSON_EQUATION) -SOLVER= FEM_EULER -% -% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) -MATH_PROBLEM= DIRECT -% -% Restart solution (NO, YES) -RESTART_SOL= NO -%RESTART_SOL= YES - -% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% -% -% Mach number (non-dimensional, based on the free-stream values) -MACH_NUMBER= 0.5 -% -% Angle of attack (degrees) -AoA= 0.0 -% -% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) -FREESTREAM_PRESSURE= 1.0 -% -% Free-stream temperature (273.15 K by default) -FREESTREAM_TEMPERATURE= 1.0 - -% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% -% -% Ratio of specific heats (1.4 (air), only for compressible flows) -GAMMA_VALUE= 1.4 -% -% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) -GAS_CONSTANT= 1.0 - -% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% -% -% Reference origin for moment computation -REF_ORIGIN_MOMENT_X = 0.00 -REF_ORIGIN_MOMENT_Y = 0.00 -REF_ORIGIN_MOMENT_Z = 0.00 -% -% Reference length for pitching, rolling, and yawing non-dimensional moment -REF_LENGTH_MOMENT= 1.0 -% -% Reference area for force coefficients (0 implies automatic calculation) -REF_AREA= 1.0 -% -% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, -% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) -REF_DIMENSIONALIZATION= DIMENSIONAL - -% ------------------------- UNSTEADY SIMULATION -------------------------------% -% -TIME_DOMAIN=YES -% -% Unsteady simulation (NO, TIME_STEPPING, DUAL_TIME_STEPPING-1ST_ORDER, -% DUAL_TIME_STEPPING-2ND_ORDER, TIME_SPECTRAL) -%TIME_MARCHING= NO -TIME_MARCHING= TIME_STEPPING -% -% Time Step for time accurate simulations (s) -- Only used when UNST_CFL_NUMBER = 0.0 -TIME_STEP= 2.0e-3 -% -% Total Physical Time for dual time stepping simulations (s) -MAX_TIME= 50.0 -% -% Unsteady Courant-Friedrichs-Lewy number of the finest grid -UNST_CFL_NUMBER= 0.0 - -% -------------------- BOUNDARY CONDITION DEFINITION --------------------------% -% -% Periodic boundary marker(s) (NONE = no marker) -% Format: ( periodic marker, donor marker, rotation_center_x, rotation_center_y, -% rotation_center_z, rotation_angle_x-axis, rotation_angle_y-axis, -% rotation_angle_z-axis, translation_x, translation_y, translation_z, ... ) -MARKER_PERIODIC= ( Bottom, Top, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, Left, Right, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, Back, Front, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0) - -% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% -% -% Courant-Friedrichs-Lewy condition of the finest grid -CFL_NUMBER= 0.2 -% -% Number of total iterations -EXT_ITER= 5000 -% -% Runge-Kutta alpha coefficients -%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5 , 1.0 ) -RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) - -% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% -% -% Convective numerical method (DG) -NUM_METHOD_FEM_FLOW= DG -% -% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) -RIEMANN_SOLVER_FEM= ROE -% -% Constant factor applied for quadrature with straight elements (2.0 by default) -QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 -%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 -% -% Constant factor applied for quadrature with curved elements (3.0 by default) -%QUADRATURE_FACTOR_CURVED_FEM = 3.0 -QUADRATURE_FACTOR_CURVED_FEM = 2.0 -% -% Time discretization (RUNGE-KUTTA_EXPLICIT) -TIME_DISCRE_FEM_FLOW= CLASSICAL_RK4_EXPLICIT -% -% Time discretization. Must be set equal to TIME_DISCRE_FEM_FLOW. -TIME_DISCRE_FLOW= CLASSICAL_RK4_EXPLICIT - -% --------------------------- CONVERGENCE PARAMETERS --------------------------% -% -% Convergence criteria (CAUCHY, RESIDUAL) -CONV_CRITERIA= RESIDUAL -% -% -% Min value of the residual (log10 of the residual) -CONV_RESIDUAL_MINVAL= -15 -% -% Start Cauchy criteria at iteration number -CONV_STARTITER= 10 -% -% Number of elements to apply the criteria -CONV_CAUCHY_ELEMS= 100 -% -% Epsilon to control the series convergence -CONV_CAUCHY_EPS= 1E-6 -% - -% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% -% Mesh input file -MESH_FILENAME= Tets_nPoly2.su2 -% -% Mesh input file format (SU2, CGNS, NETCDF_ASCII) -MESH_FORMAT= SU2 -% -% Mesh output file -MESH_OUT_FILENAME= mesh_out.su2 -% -% Restart flow input file -%SOLUTION_FILENAME= solution_flow.dat -SOLUTION_FILENAME= SolInterpolFrom3rdOrder.dat -% -% Restart adjoint input file -SOLUTION_ADJ_FILENAME= solution_adj.dat -% -% Output tabular format (CSV, TECPLOT) -TABULAR_FORMAT= CSV -%TABULAR_FORMAT= CSV -% -% Output file convergence history (w/o extension) -CONV_FILENAME= history -% -% Output file restart flow -RESTART_FILENAME= restart_flow.dat -% -% Output file restart adjoint -RESTART_ADJ_FILENAME= restart_adj.dat -% -% Output file flow (w/o extension) variables -VOLUME_FILENAME= flow -% -% Output file adjoint (w/o extension) variables -VOLUME_ADJ_FILENAME= adjoint -% -% Output Objective function gradient (using continuous adjoint) -GRAD_OBJFUNC_FILENAME= of_grad.dat -% -% Output file surface flow coefficient (w/o extension) -SURFACE_FILENAME= surface_flow -% -% Output file surface adjoint coefficient (w/o extension) -SURFACE_ADJ_FILENAME= surface_adjoint -% -% Writing solution file frequency for physical time steps (dual time) -OUTPUT_WRT_FREQ= 100 -% -% Writing convergence history frequency -WRT_CON_FREQ= 1 +% +% Inviscid vortex test case: Make sure to compile the executable with the +% flag -DINVISCID_VORTEX to set the appropriate initial conditions. +% These conditions can be found in the file solver_direct_mean_fem.cpp, +% function CFEM_DG_EulerSolver::SetInitialCondition. +% +% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% +% +% Physical governing equations (EULER, NAVIER_STOKES, +% FEM_EULER, FEM_NAVIER_STOKES, +% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, +% POISSON_EQUATION) +SOLVER= FEM_EULER +% +% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) +MATH_PROBLEM= DIRECT +% +% Restart solution (NO, YES) +RESTART_SOL= NO +%RESTART_SOL= YES + +% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% +% +% Mach number (non-dimensional, based on the free-stream values) +MACH_NUMBER= 0.5 +% +% Angle of attack (degrees) +AoA= 0.0 +% +% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) +FREESTREAM_PRESSURE= 1.0 +% +% Free-stream temperature (273.15 K by default) +FREESTREAM_TEMPERATURE= 1.0 + +% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% +% +% Ratio of specific heats (1.4 (air), only for compressible flows) +GAMMA_VALUE= 1.4 +% +% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) +GAS_CONSTANT= 1.0 + +% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% +% +% Reference origin for moment computation +REF_ORIGIN_MOMENT_X = 0.00 +REF_ORIGIN_MOMENT_Y = 0.00 +REF_ORIGIN_MOMENT_Z = 0.00 +% +% Reference length for pitching, rolling, and yawing non-dimensional moment +REF_LENGTH_MOMENT= 1.0 +% +% Reference area for force coefficients (0 implies automatic calculation) +REF_AREA= 1.0 +% +% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, +% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) +REF_DIMENSIONALIZATION= DIMENSIONAL + +% ------------------------- UNSTEADY SIMULATION -------------------------------% +% +TIME_DOMAIN=YES +% +% Unsteady simulation (NO, TIME_STEPPING, DUAL_TIME_STEPPING-1ST_ORDER, +% DUAL_TIME_STEPPING-2ND_ORDER, TIME_SPECTRAL) +%TIME_MARCHING= NO +TIME_MARCHING= TIME_STEPPING +% +% Time Step for time accurate simulations (s) -- Only used when UNST_CFL_NUMBER = 0.0 +TIME_STEP= 2.0e-3 +% +% Total Physical Time for dual time stepping simulations (s) +MAX_TIME= 50.0 +% +% Unsteady Courant-Friedrichs-Lewy number of the finest grid +UNST_CFL_NUMBER= 0.0 + +% -------------------- BOUNDARY CONDITION DEFINITION --------------------------% +% +% Periodic boundary marker(s) (NONE = no marker) +% Format: ( periodic marker, donor marker, rotation_center_x, rotation_center_y, +% rotation_center_z, rotation_angle_x-axis, rotation_angle_y-axis, +% rotation_angle_z-axis, translation_x, translation_y, translation_z, ... ) +MARKER_PERIODIC= ( Bottom, Top, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, Left, Right, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, Back, Front, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0) + +% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% +% +% Courant-Friedrichs-Lewy condition of the finest grid +CFL_NUMBER= 0.2 +% +% Number of total iterations +EXT_ITER= 5000 +% +% Runge-Kutta alpha coefficients +%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5 , 1.0 ) +RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) + +% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% +% +% Convective numerical method (DG) +NUM_METHOD_FEM_FLOW= DG +% +% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) +RIEMANN_SOLVER_FEM= ROE +% +% Constant factor applied for quadrature with straight elements (2.0 by default) +QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 +%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 +% +% Constant factor applied for quadrature with curved elements (3.0 by default) +%QUADRATURE_FACTOR_CURVED_FEM = 3.0 +QUADRATURE_FACTOR_CURVED_FEM = 2.0 +% +% Time discretization (RUNGE-KUTTA_EXPLICIT) +TIME_DISCRE_FEM_FLOW= CLASSICAL_RK4_EXPLICIT +% +% Time discretization. Must be set equal to TIME_DISCRE_FEM_FLOW. +TIME_DISCRE_FLOW= CLASSICAL_RK4_EXPLICIT + +% --------------------------- CONVERGENCE PARAMETERS --------------------------% +% +% Convergence criteria (CAUCHY, RESIDUAL) +CONV_CRITERIA= RESIDUAL +% +% +% Min value of the residual (log10 of the residual) +CONV_RESIDUAL_MINVAL= -15 +% +% Start Cauchy criteria at iteration number +CONV_STARTITER= 10 +% +% Number of elements to apply the criteria +CONV_CAUCHY_ELEMS= 100 +% +% Epsilon to control the series convergence +CONV_CAUCHY_EPS= 1E-6 +% + +% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% +% Mesh input file +MESH_FILENAME= Tets_nPoly2.su2 +% +% Mesh input file format (SU2, CGNS, NETCDF_ASCII) +MESH_FORMAT= SU2 +% +% Mesh output file +MESH_OUT_FILENAME= mesh_out.su2 +% +% Restart flow input file +%SOLUTION_FILENAME= solution_flow.dat +SOLUTION_FILENAME= SolInterpolFrom3rdOrder.dat +% +% Restart adjoint input file +SOLUTION_ADJ_FILENAME= solution_adj.dat +% +% Output tabular format (CSV, TECPLOT) +TABULAR_FORMAT= CSV +%TABULAR_FORMAT= CSV +% +% Output file convergence history (w/o extension) +CONV_FILENAME= history +% +% Output file restart flow +RESTART_FILENAME= restart_flow.dat +% +% Output file restart adjoint +RESTART_ADJ_FILENAME= restart_adj.dat +% +% Output file flow (w/o extension) variables +VOLUME_FILENAME= flow +% +% Output file adjoint (w/o extension) variables +VOLUME_ADJ_FILENAME= adjoint +% +% Output Objective function gradient (using continuous adjoint) +GRAD_OBJFUNC_FILENAME= of_grad.dat +% +% Output file surface flow coefficient (w/o extension) +SURFACE_FILENAME= surface_flow +% +% Output file surface adjoint coefficient (w/o extension) +SURFACE_ADJ_FILENAME= surface_adjoint +% +% Writing solution file frequency for physical time steps (dual time) +OUTPUT_WRT_FREQ= 100 +% diff --git a/TestCases/hom_euler/InviscidVortex/3D/nPoly4_Tets/InviscidVortex.cfg b/TestCases/hom_euler/InviscidVortex/3D/nPoly4_Tets/InviscidVortex.cfg index 960cefe0d30..91ef6ba0fcf 100644 --- a/TestCases/hom_euler/InviscidVortex/3D/nPoly4_Tets/InviscidVortex.cfg +++ b/TestCases/hom_euler/InviscidVortex/3D/nPoly4_Tets/InviscidVortex.cfg @@ -1,189 +1,187 @@ -% -% Inviscid vortex test case: Make sure to compile the executable with the -% flag -DINVISCID_VORTEX to set the appropriate initial conditions. -% These conditions can be found in the file solver_direct_mean_fem.cpp, -% function CFEM_DG_EulerSolver::SetInitialCondition. -% -% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% -% -% Physical governing equations (EULER, NAVIER_STOKES, -% FEM_EULER, FEM_NAVIER_STOKES, -% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, -% POISSON_EQUATION) -SOLVER= FEM_EULER -% -% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) -MATH_PROBLEM= DIRECT -% -% Restart solution (NO, YES) -RESTART_SOL= NO -%RESTART_SOL= YES - -% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% -% -% Mach number (non-dimensional, based on the free-stream values) -MACH_NUMBER= 0.5 -% -% Angle of attack (degrees) -AoA= 0.0 -% -% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) -FREESTREAM_PRESSURE= 1.0 -% -% Free-stream temperature (273.15 K by default) -FREESTREAM_TEMPERATURE= 1.0 - -% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% -% -% Ratio of specific heats (1.4 (air), only for compressible flows) -GAMMA_VALUE= 1.4 -% -% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) -GAS_CONSTANT= 1.0 - -% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% -% -% Reference origin for moment computation -REF_ORIGIN_MOMENT_X = 0.00 -REF_ORIGIN_MOMENT_Y = 0.00 -REF_ORIGIN_MOMENT_Z = 0.00 -% -% Reference length for pitching, rolling, and yawing non-dimensional moment -REF_LENGTH_MOMENT= 1.0 -% -% Reference area for force coefficients (0 implies automatic calculation) -REF_AREA= 1.0 -% -% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, -% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) -REF_DIMENSIONALIZATION= DIMENSIONAL - -% ------------------------- UNSTEADY SIMULATION -------------------------------% -% -TIME_DOMAIN=YES -% -% Unsteady simulation (NO, TIME_STEPPING, DUAL_TIME_STEPPING-1ST_ORDER, -% DUAL_TIME_STEPPING-2ND_ORDER, TIME_SPECTRAL) -%TIME_MARCHING= NO -TIME_MARCHING= TIME_STEPPING -% -% Time Step for time accurate simulations (s) -- Only used when UNST_CFL_NUMBER = 0.0 -TIME_STEP= 1.0e-3 -% -% Total Physical Time for dual time stepping simulations (s) -MAX_TIME= 50.0 -% -% Unsteady Courant-Friedrichs-Lewy number of the finest grid -UNST_CFL_NUMBER= 0.0 - -% -------------------- BOUNDARY CONDITION DEFINITION --------------------------% -% -% Periodic boundary marker(s) (NONE = no marker) -% Format: ( periodic marker, donor marker, rotation_center_x, rotation_center_y, -% rotation_center_z, rotation_angle_x-axis, rotation_angle_y-axis, -% rotation_angle_z-axis, translation_x, translation_y, translation_z, ... ) -MARKER_PERIODIC= ( Bottom, Top, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, Left, Right, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, Back, Front, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0) - -% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% -% -% Courant-Friedrichs-Lewy condition of the finest grid -CFL_NUMBER= 0.2 -% -% Number of total iterations -EXT_ITER= 5000 -% -% Runge-Kutta alpha coefficients -%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5 , 1.0 ) -RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) - -% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% -% -% Convective numerical method (DG) -NUM_METHOD_FEM_FLOW= DG -% -% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) -RIEMANN_SOLVER_FEM= ROE -% -% Constant factor applied for quadrature with straight elements (2.0 by default) -QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 -%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 -% -% Constant factor applied for quadrature with curved elements (3.0 by default) -%QUADRATURE_FACTOR_CURVED_FEM = 3.0 -QUADRATURE_FACTOR_CURVED_FEM = 2.0 -% -% Time discretization (RUNGE-KUTTA_EXPLICIT) -TIME_DISCRE_FEM_FLOW= CLASSICAL_RK4_EXPLICIT -% -% Time discretization. Must be set equal to TIME_DISCRE_FEM_FLOW. -TIME_DISCRE_FLOW= CLASSICAL_RK4_EXPLICIT - -% --------------------------- CONVERGENCE PARAMETERS --------------------------% -% -% Convergence criteria (CAUCHY, RESIDUAL) -CONV_CRITERIA= RESIDUAL -% -% -% Min value of the residual (log10 of the residual) -CONV_RESIDUAL_MINVAL= -15 -% -% Start Cauchy criteria at iteration number -CONV_STARTITER= 10 -% -% Number of elements to apply the criteria -CONV_CAUCHY_ELEMS= 100 -% -% Epsilon to control the series convergence -CONV_CAUCHY_EPS= 1E-6 -% - -% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% -% Mesh input file -MESH_FILENAME= Tets_nPoly4.su2 -% -% Mesh input file format (SU2, CGNS, NETCDF_ASCII) -MESH_FORMAT= SU2 -% -% Mesh output file -MESH_OUT_FILENAME= mesh_out.su2 -% -% Restart flow input file -%SOLUTION_FILENAME= solution_flow.dat -SOLUTION_FILENAME= SolInterpolFrom3rdOrder.dat -% -% Restart adjoint input file -SOLUTION_ADJ_FILENAME= solution_adj.dat -% -% Output tabular format (CSV, TECPLOT) -TABULAR_FORMAT= CSV -%TABULAR_FORMAT= CSV -% -% Output file convergence history (w/o extension) -CONV_FILENAME= history -% -% Output file restart flow -RESTART_FILENAME= restart_flow.dat -% -% Output file restart adjoint -RESTART_ADJ_FILENAME= restart_adj.dat -% -% Output file flow (w/o extension) variables -VOLUME_FILENAME= flow -% -% Output file adjoint (w/o extension) variables -VOLUME_ADJ_FILENAME= adjoint -% -% Output Objective function gradient (using continuous adjoint) -GRAD_OBJFUNC_FILENAME= of_grad.dat -% -% Output file surface flow coefficient (w/o extension) -SURFACE_FILENAME= surface_flow -% -% Output file surface adjoint coefficient (w/o extension) -SURFACE_ADJ_FILENAME= surface_adjoint -% -% Writing solution file frequency for physical time steps (dual time) -OUTPUT_WRT_FREQ= 100 -% -% Writing convergence history frequency -WRT_CON_FREQ= 1 +% +% Inviscid vortex test case: Make sure to compile the executable with the +% flag -DINVISCID_VORTEX to set the appropriate initial conditions. +% These conditions can be found in the file solver_direct_mean_fem.cpp, +% function CFEM_DG_EulerSolver::SetInitialCondition. +% +% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% +% +% Physical governing equations (EULER, NAVIER_STOKES, +% FEM_EULER, FEM_NAVIER_STOKES, +% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, +% POISSON_EQUATION) +SOLVER= FEM_EULER +% +% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) +MATH_PROBLEM= DIRECT +% +% Restart solution (NO, YES) +RESTART_SOL= NO +%RESTART_SOL= YES + +% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% +% +% Mach number (non-dimensional, based on the free-stream values) +MACH_NUMBER= 0.5 +% +% Angle of attack (degrees) +AoA= 0.0 +% +% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) +FREESTREAM_PRESSURE= 1.0 +% +% Free-stream temperature (273.15 K by default) +FREESTREAM_TEMPERATURE= 1.0 + +% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% +% +% Ratio of specific heats (1.4 (air), only for compressible flows) +GAMMA_VALUE= 1.4 +% +% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) +GAS_CONSTANT= 1.0 + +% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% +% +% Reference origin for moment computation +REF_ORIGIN_MOMENT_X = 0.00 +REF_ORIGIN_MOMENT_Y = 0.00 +REF_ORIGIN_MOMENT_Z = 0.00 +% +% Reference length for pitching, rolling, and yawing non-dimensional moment +REF_LENGTH_MOMENT= 1.0 +% +% Reference area for force coefficients (0 implies automatic calculation) +REF_AREA= 1.0 +% +% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, +% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) +REF_DIMENSIONALIZATION= DIMENSIONAL + +% ------------------------- UNSTEADY SIMULATION -------------------------------% +% +TIME_DOMAIN=YES +% +% Unsteady simulation (NO, TIME_STEPPING, DUAL_TIME_STEPPING-1ST_ORDER, +% DUAL_TIME_STEPPING-2ND_ORDER, TIME_SPECTRAL) +%TIME_MARCHING= NO +TIME_MARCHING= TIME_STEPPING +% +% Time Step for time accurate simulations (s) -- Only used when UNST_CFL_NUMBER = 0.0 +TIME_STEP= 1.0e-3 +% +% Total Physical Time for dual time stepping simulations (s) +MAX_TIME= 50.0 +% +% Unsteady Courant-Friedrichs-Lewy number of the finest grid +UNST_CFL_NUMBER= 0.0 + +% -------------------- BOUNDARY CONDITION DEFINITION --------------------------% +% +% Periodic boundary marker(s) (NONE = no marker) +% Format: ( periodic marker, donor marker, rotation_center_x, rotation_center_y, +% rotation_center_z, rotation_angle_x-axis, rotation_angle_y-axis, +% rotation_angle_z-axis, translation_x, translation_y, translation_z, ... ) +MARKER_PERIODIC= ( Bottom, Top, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, Left, Right, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, Back, Front, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0) + +% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% +% +% Courant-Friedrichs-Lewy condition of the finest grid +CFL_NUMBER= 0.2 +% +% Number of total iterations +EXT_ITER= 5000 +% +% Runge-Kutta alpha coefficients +%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5 , 1.0 ) +RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) + +% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% +% +% Convective numerical method (DG) +NUM_METHOD_FEM_FLOW= DG +% +% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) +RIEMANN_SOLVER_FEM= ROE +% +% Constant factor applied for quadrature with straight elements (2.0 by default) +QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 +%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 +% +% Constant factor applied for quadrature with curved elements (3.0 by default) +%QUADRATURE_FACTOR_CURVED_FEM = 3.0 +QUADRATURE_FACTOR_CURVED_FEM = 2.0 +% +% Time discretization (RUNGE-KUTTA_EXPLICIT) +TIME_DISCRE_FEM_FLOW= CLASSICAL_RK4_EXPLICIT +% +% Time discretization. Must be set equal to TIME_DISCRE_FEM_FLOW. +TIME_DISCRE_FLOW= CLASSICAL_RK4_EXPLICIT + +% --------------------------- CONVERGENCE PARAMETERS --------------------------% +% +% Convergence criteria (CAUCHY, RESIDUAL) +CONV_CRITERIA= RESIDUAL +% +% +% Min value of the residual (log10 of the residual) +CONV_RESIDUAL_MINVAL= -15 +% +% Start Cauchy criteria at iteration number +CONV_STARTITER= 10 +% +% Number of elements to apply the criteria +CONV_CAUCHY_ELEMS= 100 +% +% Epsilon to control the series convergence +CONV_CAUCHY_EPS= 1E-6 +% + +% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% +% Mesh input file +MESH_FILENAME= Tets_nPoly4.su2 +% +% Mesh input file format (SU2, CGNS, NETCDF_ASCII) +MESH_FORMAT= SU2 +% +% Mesh output file +MESH_OUT_FILENAME= mesh_out.su2 +% +% Restart flow input file +%SOLUTION_FILENAME= solution_flow.dat +SOLUTION_FILENAME= SolInterpolFrom3rdOrder.dat +% +% Restart adjoint input file +SOLUTION_ADJ_FILENAME= solution_adj.dat +% +% Output tabular format (CSV, TECPLOT) +TABULAR_FORMAT= CSV +%TABULAR_FORMAT= CSV +% +% Output file convergence history (w/o extension) +CONV_FILENAME= history +% +% Output file restart flow +RESTART_FILENAME= restart_flow.dat +% +% Output file restart adjoint +RESTART_ADJ_FILENAME= restart_adj.dat +% +% Output file flow (w/o extension) variables +VOLUME_FILENAME= flow +% +% Output file adjoint (w/o extension) variables +VOLUME_ADJ_FILENAME= adjoint +% +% Output Objective function gradient (using continuous adjoint) +GRAD_OBJFUNC_FILENAME= of_grad.dat +% +% Output file surface flow coefficient (w/o extension) +SURFACE_FILENAME= surface_flow +% +% Output file surface adjoint coefficient (w/o extension) +SURFACE_ADJ_FILENAME= surface_adjoint +% +% Writing solution file frequency for physical time steps (dual time) +OUTPUT_WRT_FREQ= 100 +% diff --git a/TestCases/hom_euler/NACA0012_3D_Hybrid_4thOrder/fem_NACA0012.cfg b/TestCases/hom_euler/NACA0012_3D_Hybrid_4thOrder/fem_NACA0012.cfg index 16f7a80a0cd..8dfb0a75c99 100644 --- a/TestCases/hom_euler/NACA0012_3D_Hybrid_4thOrder/fem_NACA0012.cfg +++ b/TestCases/hom_euler/NACA0012_3D_Hybrid_4thOrder/fem_NACA0012.cfg @@ -179,5 +179,3 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 2500 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/hom_euler/NACA0012_5thOrder/fem_NACA0012.cfg b/TestCases/hom_euler/NACA0012_5thOrder/fem_NACA0012.cfg index 3eb612ef60b..722f7fe39c5 100644 --- a/TestCases/hom_euler/NACA0012_5thOrder/fem_NACA0012.cfg +++ b/TestCases/hom_euler/NACA0012_5thOrder/fem_NACA0012.cfg @@ -184,8 +184,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 50000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output fields SCREEN_OUTPUT = (RMS_DENSITY, RMS_MOMENTUM-X, RMS_ENERGY, LIFT, DRAG) diff --git a/TestCases/hom_euler/NACA0012_5thOrder/fem_NACA0012_reg.cfg b/TestCases/hom_euler/NACA0012_5thOrder/fem_NACA0012_reg.cfg index 39e8fb5f7b1..51fd99f49b5 100644 --- a/TestCases/hom_euler/NACA0012_5thOrder/fem_NACA0012_reg.cfg +++ b/TestCases/hom_euler/NACA0012_5thOrder/fem_NACA0012_reg.cfg @@ -187,8 +187,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 50000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output fields SCREEN_OUTPUT=(INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) diff --git a/TestCases/hom_euler/Ringleb/Quad100X50_nPoly3/Ringleb.cfg b/TestCases/hom_euler/Ringleb/Quad100X50_nPoly3/Ringleb.cfg index 68cbd28dc3b..127f28c6a22 100644 --- a/TestCases/hom_euler/Ringleb/Quad100X50_nPoly3/Ringleb.cfg +++ b/TestCases/hom_euler/Ringleb/Quad100X50_nPoly3/Ringleb.cfg @@ -1,180 +1,179 @@ -% -% Ringleb test case: Make sure to compile the executable with the -% flag -DRINGLEB to set the appropriate initial and boundary conditions. -% -% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% -% -% Physical governing equations (EULER, NAVIER_STOKES, -% FEM_EULER, FEM_NAVIER_STOKES, -% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, -% POISSON_EQUATION) -SOLVER= FEM_EULER -% -% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) -MATH_PROBLEM= DIRECT -% -% Restart solution (NO, YES) -RESTART_SOL= NO -%RESTART_SOL= YES - -% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% -% -% Mach number (non-dimensional, based on the free-stream values) -MACH_NUMBER= 0.8 -% -% Angle of attack (degrees) -AoA= 0.0 -% -% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) -FREESTREAM_PRESSURE= 101325.0 -% -% Free-stream temperature (273.15 K by default) -FREESTREAM_TEMPERATURE= 273.15 - -% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% -% -% Ratio of specific heats (1.4 (air), only for compressible flows) -GAMMA_VALUE= 1.4 -% -% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) -GAS_CONSTANT= 287.87 - -% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% -% -% Reference origin for moment computation -REF_ORIGIN_MOMENT_X = 0.25 -REF_ORIGIN_MOMENT_Y = 0.00 -REF_ORIGIN_MOMENT_Z = 0.00 -% -% Reference length for pitching, rolling, and yawing non-dimensional moment -REF_LENGTH_MOMENT= 1.0 -% -% Reference area for force coefficients (0 implies automatic calculation) -REF_AREA= 1.0 -% -% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, -% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) -REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE - -% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% -% -% Marker of the Euler boundary (NONE = no marker) -%MARKER_EULER= ( LeftBoundary, RightBoundary ) -% -% Custom boundaries -%MARKER_CUSTOM= ( BottomBoundary, TopBoundary ) -MARKER_CUSTOM= ( BottomBoundary, LeftBoundary, RightBoundary, TopBoundary ) - -% ------------------------ SURFACES IDENTIFICATION ----------------------------% -% -% Marker(s) of the surface in the surface flow solution file -MARKER_PLOTTING = ( LeftBoundary, RightBoundary ) -% -% Marker(s) of the surface where the non-dimensional coefficients are evaluated. -MARKER_MONITORING = ( LeftBoundary, RightBoundary ) -% -% Marker(s) of the surface where obj. func. (design problem) will be evaluated -MARKER_DESIGNING = ( LeftBoundary, RightBoundary ) - -% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% -% -% Courant-Friedrichs-Lewy condition of the finest grid -CFL_NUMBER= 2.5 -%CFL_NUMBER= 0.2 % For AUSM -% -% Number of total iterations -EXT_ITER= 10000 -%EXT_ITER= 1 -% -% Runge-Kutta alpha coefficients -%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5, 1.0 ) -RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) - -% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% -% -% Convective numerical method (DG) -NUM_METHOD_FEM_FLOW= DG -% -% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) -RIEMANN_SOLVER_FEM= ROE -%RIEMANN_SOLVER_FEM= AUSM -% -% Constant factor applied for quadrature with straight elements (2.0 by default) -QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 -%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 -% -% Constant factor applied for quadrature with curved elements (3.0 by default) -QUADRATURE_FACTOR_CURVED_FEM = 3.0 -%QUADRATURE_FACTOR_CURVED_FEM = 2.0 -% -% Time discretization (RUNGE-KUTTA_EXPLICIT) -TIME_DISCRE_FEM_FLOW= RUNGE-KUTTA_EXPLICIT -% - -% --------------------------- CONVERGENCE PARAMETERS --------------------------% -% -% Convergence criteria (CAUCHY, RESIDUAL) -CONV_CRITERIA= RESIDUAL -% -% -% Min value of the residual (log10 of the residual) -CONV_RESIDUAL_MINVAL= -8 -% -% Start Cauchy criteria at iteration number -CONV_STARTITER= 10 -% -% Number of elements to apply the criteria -CONV_CAUCHY_ELEMS= 100 -% -% Epsilon to control the series convergence -CONV_CAUCHY_EPS= 1E-6 -% - -% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% -% Mesh input file -MESH_FILENAME= Quad100X50_nPoly3.su2 -% -% Mesh input file format (SU2, CGNS, NETCDF_ASCII) -MESH_FORMAT= SU2 -% -% Mesh output file -MESH_OUT_FILENAME= mesh_out.su2 -% -% Restart flow input file -SOLUTION_FILENAME= solution_flow.dat -% -% Restart adjoint input file -SOLUTION_ADJ_FILENAME= solution_adj.dat -% -% Output tabular format (CSV, TECPLOT) -TABULAR_FORMAT= CSV -% -% Output file convergence history (w/o extension) -CONV_FILENAME= history -% -% Output file restart flow -RESTART_FILENAME= restart_flow.dat -% -% Output file restart adjoint -RESTART_ADJ_FILENAME= restart_adj.dat -% -% Output file flow (w/o extension) variables -VOLUME_FILENAME= flow -% -% Output file adjoint (w/o extension) variables -VOLUME_ADJ_FILENAME= adjoint -% -% Output Objective function gradient (using continuous adjoint) -GRAD_OBJFUNC_FILENAME= of_grad.dat -% -% Output file surface flow coefficient (w/o extension) -SURFACE_FILENAME= surface_flow -% -% Output file surface adjoint coefficient (w/o extension) -SURFACE_ADJ_FILENAME= surface_adjoint -% -% Writing solution file frequency -OUTPUT_WRT_FREQ= 5000 -% -% Writing convergence history frequency -WRT_CON_FREQ= 100 +% +% Ringleb test case: Make sure to compile the executable with the +% flag -DRINGLEB to set the appropriate initial and boundary conditions. +% +% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% +% +% Physical governing equations (EULER, NAVIER_STOKES, +% FEM_EULER, FEM_NAVIER_STOKES, +% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, +% POISSON_EQUATION) +SOLVER= FEM_EULER +% +% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) +MATH_PROBLEM= DIRECT +% +% Restart solution (NO, YES) +RESTART_SOL= NO +%RESTART_SOL= YES + +% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% +% +% Mach number (non-dimensional, based on the free-stream values) +MACH_NUMBER= 0.8 +% +% Angle of attack (degrees) +AoA= 0.0 +% +% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) +FREESTREAM_PRESSURE= 101325.0 +% +% Free-stream temperature (273.15 K by default) +FREESTREAM_TEMPERATURE= 273.15 + +% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% +% +% Ratio of specific heats (1.4 (air), only for compressible flows) +GAMMA_VALUE= 1.4 +% +% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) +GAS_CONSTANT= 287.87 + +% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% +% +% Reference origin for moment computation +REF_ORIGIN_MOMENT_X = 0.25 +REF_ORIGIN_MOMENT_Y = 0.00 +REF_ORIGIN_MOMENT_Z = 0.00 +% +% Reference length for pitching, rolling, and yawing non-dimensional moment +REF_LENGTH_MOMENT= 1.0 +% +% Reference area for force coefficients (0 implies automatic calculation) +REF_AREA= 1.0 +% +% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, +% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) +REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE + +% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% +% +% Marker of the Euler boundary (NONE = no marker) +%MARKER_EULER= ( LeftBoundary, RightBoundary ) +% +% Custom boundaries +%MARKER_CUSTOM= ( BottomBoundary, TopBoundary ) +MARKER_CUSTOM= ( BottomBoundary, LeftBoundary, RightBoundary, TopBoundary ) + +% ------------------------ SURFACES IDENTIFICATION ----------------------------% +% +% Marker(s) of the surface in the surface flow solution file +MARKER_PLOTTING = ( LeftBoundary, RightBoundary ) +% +% Marker(s) of the surface where the non-dimensional coefficients are evaluated. +MARKER_MONITORING = ( LeftBoundary, RightBoundary ) +% +% Marker(s) of the surface where obj. func. (design problem) will be evaluated +MARKER_DESIGNING = ( LeftBoundary, RightBoundary ) + +% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% +% +% Courant-Friedrichs-Lewy condition of the finest grid +CFL_NUMBER= 2.5 +%CFL_NUMBER= 0.2 % For AUSM +% +% Number of total iterations +EXT_ITER= 10000 +%EXT_ITER= 1 +% +% Runge-Kutta alpha coefficients +%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5, 1.0 ) +RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) + +% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% +% +% Convective numerical method (DG) +NUM_METHOD_FEM_FLOW= DG +% +% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) +RIEMANN_SOLVER_FEM= ROE +%RIEMANN_SOLVER_FEM= AUSM +% +% Constant factor applied for quadrature with straight elements (2.0 by default) +QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 +%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 +% +% Constant factor applied for quadrature with curved elements (3.0 by default) +QUADRATURE_FACTOR_CURVED_FEM = 3.0 +%QUADRATURE_FACTOR_CURVED_FEM = 2.0 +% +% Time discretization (RUNGE-KUTTA_EXPLICIT) +TIME_DISCRE_FEM_FLOW= RUNGE-KUTTA_EXPLICIT +% + +% --------------------------- CONVERGENCE PARAMETERS --------------------------% +% +% Convergence criteria (CAUCHY, RESIDUAL) +CONV_CRITERIA= RESIDUAL +% +% +% Min value of the residual (log10 of the residual) +CONV_RESIDUAL_MINVAL= -8 +% +% Start Cauchy criteria at iteration number +CONV_STARTITER= 10 +% +% Number of elements to apply the criteria +CONV_CAUCHY_ELEMS= 100 +% +% Epsilon to control the series convergence +CONV_CAUCHY_EPS= 1E-6 +% + +% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% +% Mesh input file +MESH_FILENAME= Quad100X50_nPoly3.su2 +% +% Mesh input file format (SU2, CGNS, NETCDF_ASCII) +MESH_FORMAT= SU2 +% +% Mesh output file +MESH_OUT_FILENAME= mesh_out.su2 +% +% Restart flow input file +SOLUTION_FILENAME= solution_flow.dat +% +% Restart adjoint input file +SOLUTION_ADJ_FILENAME= solution_adj.dat +% +% Output tabular format (CSV, TECPLOT) +TABULAR_FORMAT= CSV +% +% Output file convergence history (w/o extension) +CONV_FILENAME= history +% +% Output file restart flow +RESTART_FILENAME= restart_flow.dat +% +% Output file restart adjoint +RESTART_ADJ_FILENAME= restart_adj.dat +% +% Output file flow (w/o extension) variables +VOLUME_FILENAME= flow +% +% Output file adjoint (w/o extension) variables +VOLUME_ADJ_FILENAME= adjoint +% +% Output Objective function gradient (using continuous adjoint) +GRAD_OBJFUNC_FILENAME= of_grad.dat +% +% Output file surface flow coefficient (w/o extension) +SURFACE_FILENAME= surface_flow +% +% Output file surface adjoint coefficient (w/o extension) +SURFACE_ADJ_FILENAME= surface_adjoint +% +% Writing solution file frequency +OUTPUT_WRT_FREQ= 5000 +% +SCREEN_WRT_FREQ_INNER= 100 diff --git a/TestCases/hom_euler/Ringleb/Quad100X50_nPoly3/Ringleb_WallBC.cfg b/TestCases/hom_euler/Ringleb/Quad100X50_nPoly3/Ringleb_WallBC.cfg index fa256421396..cad34d0d119 100644 --- a/TestCases/hom_euler/Ringleb/Quad100X50_nPoly3/Ringleb_WallBC.cfg +++ b/TestCases/hom_euler/Ringleb/Quad100X50_nPoly3/Ringleb_WallBC.cfg @@ -1,180 +1,179 @@ -% -% Ringleb test case: Make sure to compile the executable with the -% flag -DRINGLEB to set the appropriate initial and boundary conditions. -% -% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% -% -% Physical governing equations (EULER, NAVIER_STOKES, -% FEM_EULER, FEM_NAVIER_STOKES, -% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, -% POISSON_EQUATION) -SOLVER= FEM_EULER -% -% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) -MATH_PROBLEM= DIRECT -% -% Restart solution (NO, YES) -RESTART_SOL= NO -%RESTART_SOL= YES - -% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% -% -% Mach number (non-dimensional, based on the free-stream values) -MACH_NUMBER= 0.8 -% -% Angle of attack (degrees) -AoA= 0.0 -% -% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) -FREESTREAM_PRESSURE= 101325.0 -% -% Free-stream temperature (273.15 K by default) -FREESTREAM_TEMPERATURE= 273.15 - -% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% -% -% Ratio of specific heats (1.4 (air), only for compressible flows) -GAMMA_VALUE= 1.4 -% -% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) -GAS_CONSTANT= 287.87 - -% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% -% -% Reference origin for moment computation -REF_ORIGIN_MOMENT_X = 0.25 -REF_ORIGIN_MOMENT_Y = 0.00 -REF_ORIGIN_MOMENT_Z = 0.00 -% -% Reference length for pitching, rolling, and yawing non-dimensional moment -REF_LENGTH_MOMENT= 1.0 -% -% Reference area for force coefficients (0 implies automatic calculation) -REF_AREA= 1.0 -% -% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, -% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) -REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE - -% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% -% -% Marker of the Euler boundary (NONE = no marker) -MARKER_EULER= ( LeftBoundary, RightBoundary ) -% -% Custom boundaries -MARKER_CUSTOM= ( BottomBoundary, TopBoundary ) -%MARKER_CUSTOM= ( BottomBoundary, LeftBoundary, RightBoundary, TopBoundary ) - -% ------------------------ SURFACES IDENTIFICATION ----------------------------% -% -% Marker(s) of the surface in the surface flow solution file -MARKER_PLOTTING = ( LeftBoundary, RightBoundary ) -% -% Marker(s) of the surface where the non-dimensional coefficients are evaluated. -MARKER_MONITORING = ( LeftBoundary, RightBoundary ) -% -% Marker(s) of the surface where obj. func. (design problem) will be evaluated -MARKER_DESIGNING = ( LeftBoundary, RightBoundary ) - -% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% -% -% Courant-Friedrichs-Lewy condition of the finest grid -CFL_NUMBER= 2.5 -%CFL_NUMBER= 0.2 % For AUSM -% -% Number of total iterations -EXT_ITER= 10000 -%EXT_ITER= 1 -% -% Runge-Kutta alpha coefficients -%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5, 1.0 ) -RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) - -% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% -% -% Convective numerical method (DG) -NUM_METHOD_FEM_FLOW= DG -% -% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) -RIEMANN_SOLVER_FEM= ROE -%RIEMANN_SOLVER_FEM= AUSM -% -% Constant factor applied for quadrature with straight elements (2.0 by default) -QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 -%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 -% -% Constant factor applied for quadrature with curved elements (3.0 by default) -QUADRATURE_FACTOR_CURVED_FEM = 3.0 -%QUADRATURE_FACTOR_CURVED_FEM = 2.0 -% -% Time discretization (RUNGE-KUTTA_EXPLICIT) -TIME_DISCRE_FEM_FLOW= RUNGE-KUTTA_EXPLICIT -% - -% --------------------------- CONVERGENCE PARAMETERS --------------------------% -% -% Convergence criteria (CAUCHY, RESIDUAL) -CONV_CRITERIA= RESIDUAL -% -% -% Min value of the residual (log10 of the residual) -CONV_RESIDUAL_MINVAL= -8 -% -% Start Cauchy criteria at iteration number -CONV_STARTITER= 10 -% -% Number of elements to apply the criteria -CONV_CAUCHY_ELEMS= 100 -% -% Epsilon to control the series convergence -CONV_CAUCHY_EPS= 1E-6 -% - -% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% -% Mesh input file -MESH_FILENAME= Quad100X50_nPoly3.su2 -% -% Mesh input file format (SU2, CGNS, NETCDF_ASCII) -MESH_FORMAT= SU2 -% -% Mesh output file -MESH_OUT_FILENAME= mesh_out.su2 -% -% Restart flow input file -SOLUTION_FILENAME= solution_flow.dat -% -% Restart adjoint input file -SOLUTION_ADJ_FILENAME= solution_adj.dat -% -% Output tabular format (CSV, TECPLOT) -TABULAR_FORMAT= CSV -% -% Output file convergence history (w/o extension) -CONV_FILENAME= history -% -% Output file restart flow -RESTART_FILENAME= restart_flow.dat -% -% Output file restart adjoint -RESTART_ADJ_FILENAME= restart_adj.dat -% -% Output file flow (w/o extension) variables -VOLUME_FILENAME= flow -% -% Output file adjoint (w/o extension) variables -VOLUME_ADJ_FILENAME= adjoint -% -% Output Objective function gradient (using continuous adjoint) -GRAD_OBJFUNC_FILENAME= of_grad.dat -% -% Output file surface flow coefficient (w/o extension) -SURFACE_FILENAME= surface_flow -% -% Output file surface adjoint coefficient (w/o extension) -SURFACE_ADJ_FILENAME= surface_adjoint -% -% Writing solution file frequency -OUTPUT_WRT_FREQ= 5000 -% -% Writing convergence history frequency -WRT_CON_FREQ= 100 +% +% Ringleb test case: Make sure to compile the executable with the +% flag -DRINGLEB to set the appropriate initial and boundary conditions. +% +% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% +% +% Physical governing equations (EULER, NAVIER_STOKES, +% FEM_EULER, FEM_NAVIER_STOKES, +% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, +% POISSON_EQUATION) +SOLVER= FEM_EULER +% +% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) +MATH_PROBLEM= DIRECT +% +% Restart solution (NO, YES) +RESTART_SOL= NO +%RESTART_SOL= YES + +% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% +% +% Mach number (non-dimensional, based on the free-stream values) +MACH_NUMBER= 0.8 +% +% Angle of attack (degrees) +AoA= 0.0 +% +% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) +FREESTREAM_PRESSURE= 101325.0 +% +% Free-stream temperature (273.15 K by default) +FREESTREAM_TEMPERATURE= 273.15 + +% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% +% +% Ratio of specific heats (1.4 (air), only for compressible flows) +GAMMA_VALUE= 1.4 +% +% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) +GAS_CONSTANT= 287.87 + +% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% +% +% Reference origin for moment computation +REF_ORIGIN_MOMENT_X = 0.25 +REF_ORIGIN_MOMENT_Y = 0.00 +REF_ORIGIN_MOMENT_Z = 0.00 +% +% Reference length for pitching, rolling, and yawing non-dimensional moment +REF_LENGTH_MOMENT= 1.0 +% +% Reference area for force coefficients (0 implies automatic calculation) +REF_AREA= 1.0 +% +% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, +% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) +REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE + +% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% +% +% Marker of the Euler boundary (NONE = no marker) +MARKER_EULER= ( LeftBoundary, RightBoundary ) +% +% Custom boundaries +MARKER_CUSTOM= ( BottomBoundary, TopBoundary ) +%MARKER_CUSTOM= ( BottomBoundary, LeftBoundary, RightBoundary, TopBoundary ) + +% ------------------------ SURFACES IDENTIFICATION ----------------------------% +% +% Marker(s) of the surface in the surface flow solution file +MARKER_PLOTTING = ( LeftBoundary, RightBoundary ) +% +% Marker(s) of the surface where the non-dimensional coefficients are evaluated. +MARKER_MONITORING = ( LeftBoundary, RightBoundary ) +% +% Marker(s) of the surface where obj. func. (design problem) will be evaluated +MARKER_DESIGNING = ( LeftBoundary, RightBoundary ) + +% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% +% +% Courant-Friedrichs-Lewy condition of the finest grid +CFL_NUMBER= 2.5 +%CFL_NUMBER= 0.2 % For AUSM +% +% Number of total iterations +EXT_ITER= 10000 +%EXT_ITER= 1 +% +% Runge-Kutta alpha coefficients +%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5, 1.0 ) +RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) + +% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% +% +% Convective numerical method (DG) +NUM_METHOD_FEM_FLOW= DG +% +% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) +RIEMANN_SOLVER_FEM= ROE +%RIEMANN_SOLVER_FEM= AUSM +% +% Constant factor applied for quadrature with straight elements (2.0 by default) +QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 +%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 +% +% Constant factor applied for quadrature with curved elements (3.0 by default) +QUADRATURE_FACTOR_CURVED_FEM = 3.0 +%QUADRATURE_FACTOR_CURVED_FEM = 2.0 +% +% Time discretization (RUNGE-KUTTA_EXPLICIT) +TIME_DISCRE_FEM_FLOW= RUNGE-KUTTA_EXPLICIT +% + +% --------------------------- CONVERGENCE PARAMETERS --------------------------% +% +% Convergence criteria (CAUCHY, RESIDUAL) +CONV_CRITERIA= RESIDUAL +% +% +% Min value of the residual (log10 of the residual) +CONV_RESIDUAL_MINVAL= -8 +% +% Start Cauchy criteria at iteration number +CONV_STARTITER= 10 +% +% Number of elements to apply the criteria +CONV_CAUCHY_ELEMS= 100 +% +% Epsilon to control the series convergence +CONV_CAUCHY_EPS= 1E-6 +% + +% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% +% Mesh input file +MESH_FILENAME= Quad100X50_nPoly3.su2 +% +% Mesh input file format (SU2, CGNS, NETCDF_ASCII) +MESH_FORMAT= SU2 +% +% Mesh output file +MESH_OUT_FILENAME= mesh_out.su2 +% +% Restart flow input file +SOLUTION_FILENAME= solution_flow.dat +% +% Restart adjoint input file +SOLUTION_ADJ_FILENAME= solution_adj.dat +% +% Output tabular format (CSV, TECPLOT) +TABULAR_FORMAT= CSV +% +% Output file convergence history (w/o extension) +CONV_FILENAME= history +% +% Output file restart flow +RESTART_FILENAME= restart_flow.dat +% +% Output file restart adjoint +RESTART_ADJ_FILENAME= restart_adj.dat +% +% Output file flow (w/o extension) variables +VOLUME_FILENAME= flow +% +% Output file adjoint (w/o extension) variables +VOLUME_ADJ_FILENAME= adjoint +% +% Output Objective function gradient (using continuous adjoint) +GRAD_OBJFUNC_FILENAME= of_grad.dat +% +% Output file surface flow coefficient (w/o extension) +SURFACE_FILENAME= surface_flow +% +% Output file surface adjoint coefficient (w/o extension) +SURFACE_ADJ_FILENAME= surface_adjoint +% +% Writing solution file frequency +OUTPUT_WRT_FREQ= 5000 +% +SCREEN_WRT_FREQ_INNER= 100 diff --git a/TestCases/hom_euler/Ringleb/Quad100X50_nPoly4/Ringleb.cfg b/TestCases/hom_euler/Ringleb/Quad100X50_nPoly4/Ringleb.cfg index 20f632aeb5d..7ff9c991f8b 100644 --- a/TestCases/hom_euler/Ringleb/Quad100X50_nPoly4/Ringleb.cfg +++ b/TestCases/hom_euler/Ringleb/Quad100X50_nPoly4/Ringleb.cfg @@ -1,180 +1,179 @@ -% -% Ringleb test case: Make sure to compile the executable with the -% flag -DRINGLEB to set the appropriate initial and boundary conditions. -% -% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% -% -% Physical governing equations (EULER, NAVIER_STOKES, -% FEM_EULER, FEM_NAVIER_STOKES, -% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, -% POISSON_EQUATION) -SOLVER= FEM_EULER -% -% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) -MATH_PROBLEM= DIRECT -% -% Restart solution (NO, YES) -RESTART_SOL= NO -%RESTART_SOL= YES - -% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% -% -% Mach number (non-dimensional, based on the free-stream values) -MACH_NUMBER= 0.8 -% -% Angle of attack (degrees) -AoA= 0.0 -% -% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) -FREESTREAM_PRESSURE= 101325.0 -% -% Free-stream temperature (273.15 K by default) -FREESTREAM_TEMPERATURE= 273.15 - -% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% -% -% Ratio of specific heats (1.4 (air), only for compressible flows) -GAMMA_VALUE= 1.4 -% -% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) -GAS_CONSTANT= 287.87 - -% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% -% -% Reference origin for moment computation -REF_ORIGIN_MOMENT_X = 0.25 -REF_ORIGIN_MOMENT_Y = 0.00 -REF_ORIGIN_MOMENT_Z = 0.00 -% -% Reference length for pitching, rolling, and yawing non-dimensional moment -REF_LENGTH_MOMENT= 1.0 -% -% Reference area for force coefficients (0 implies automatic calculation) -REF_AREA= 1.0 -% -% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, -% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) -REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE - -% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% -% -% Marker of the Euler boundary (NONE = no marker) -%MARKER_EULER= ( LeftBoundary, RightBoundary ) -% -% Custom boundaries -%MARKER_CUSTOM= ( BottomBoundary, TopBoundary ) -MARKER_CUSTOM= ( BottomBoundary, LeftBoundary, RightBoundary, TopBoundary ) - -% ------------------------ SURFACES IDENTIFICATION ----------------------------% -% -% Marker(s) of the surface in the surface flow solution file -MARKER_PLOTTING = ( LeftBoundary, RightBoundary ) -% -% Marker(s) of the surface where the non-dimensional coefficients are evaluated. -MARKER_MONITORING = ( LeftBoundary, RightBoundary ) -% -% Marker(s) of the surface where obj. func. (design problem) will be evaluated -MARKER_DESIGNING = ( LeftBoundary, RightBoundary ) - -% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% -% -% Courant-Friedrichs-Lewy condition of the finest grid -CFL_NUMBER= 2.5 -%CFL_NUMBER= 0.2 % For AUSM -% -% Number of total iterations -EXT_ITER= 10000 -%EXT_ITER= 1 -% -% Runge-Kutta alpha coefficients -%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5, 1.0 ) -RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) - -% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% -% -% Convective numerical method (DG) -NUM_METHOD_FEM_FLOW= DG -% -% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) -RIEMANN_SOLVER_FEM= ROE -%RIEMANN_SOLVER_FEM= AUSM -% -% Constant factor applied for quadrature with straight elements (2.0 by default) -QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 -%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 -% -% Constant factor applied for quadrature with curved elements (3.0 by default) -QUADRATURE_FACTOR_CURVED_FEM = 3.0 -%QUADRATURE_FACTOR_CURVED_FEM = 2.0 -% -% Time discretization (RUNGE-KUTTA_EXPLICIT) -TIME_DISCRE_FEM_FLOW= RUNGE-KUTTA_EXPLICIT -% - -% --------------------------- CONVERGENCE PARAMETERS --------------------------% -% -% Convergence criteria (CAUCHY, RESIDUAL) -CONV_CRITERIA= RESIDUAL -% -% -% Min value of the residual (log10 of the residual) -CONV_RESIDUAL_MINVAL= -8 -% -% Start Cauchy criteria at iteration number -CONV_STARTITER= 10 -% -% Number of elements to apply the criteria -CONV_CAUCHY_ELEMS= 100 -% -% Epsilon to control the series convergence -CONV_CAUCHY_EPS= 1E-6 -% - -% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% -% Mesh input file -MESH_FILENAME= Quad100X50_nPoly4.su2 -% -% Mesh input file format (SU2, CGNS, NETCDF_ASCII) -MESH_FORMAT= SU2 -% -% Mesh output file -MESH_OUT_FILENAME= mesh_out.su2 -% -% Restart flow input file -SOLUTION_FILENAME= solution_flow.dat -% -% Restart adjoint input file -SOLUTION_ADJ_FILENAME= solution_adj.dat -% -% Output tabular format (CSV, TECPLOT) -TABULAR_FORMAT= CSV -% -% Output file convergence history (w/o extension) -CONV_FILENAME= history -% -% Output file restart flow -RESTART_FILENAME= restart_flow.dat -% -% Output file restart adjoint -RESTART_ADJ_FILENAME= restart_adj.dat -% -% Output file flow (w/o extension) variables -VOLUME_FILENAME= flow -% -% Output file adjoint (w/o extension) variables -VOLUME_ADJ_FILENAME= adjoint -% -% Output Objective function gradient (using continuous adjoint) -GRAD_OBJFUNC_FILENAME= of_grad.dat -% -% Output file surface flow coefficient (w/o extension) -SURFACE_FILENAME= surface_flow -% -% Output file surface adjoint coefficient (w/o extension) -SURFACE_ADJ_FILENAME= surface_adjoint -% -% Writing solution file frequency -OUTPUT_WRT_FREQ= 5000 -% -% Writing convergence history frequency -WRT_CON_FREQ= 100 +% +% Ringleb test case: Make sure to compile the executable with the +% flag -DRINGLEB to set the appropriate initial and boundary conditions. +% +% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% +% +% Physical governing equations (EULER, NAVIER_STOKES, +% FEM_EULER, FEM_NAVIER_STOKES, +% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, +% POISSON_EQUATION) +SOLVER= FEM_EULER +% +% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) +MATH_PROBLEM= DIRECT +% +% Restart solution (NO, YES) +RESTART_SOL= NO +%RESTART_SOL= YES + +% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% +% +% Mach number (non-dimensional, based on the free-stream values) +MACH_NUMBER= 0.8 +% +% Angle of attack (degrees) +AoA= 0.0 +% +% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) +FREESTREAM_PRESSURE= 101325.0 +% +% Free-stream temperature (273.15 K by default) +FREESTREAM_TEMPERATURE= 273.15 + +% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% +% +% Ratio of specific heats (1.4 (air), only for compressible flows) +GAMMA_VALUE= 1.4 +% +% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) +GAS_CONSTANT= 287.87 + +% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% +% +% Reference origin for moment computation +REF_ORIGIN_MOMENT_X = 0.25 +REF_ORIGIN_MOMENT_Y = 0.00 +REF_ORIGIN_MOMENT_Z = 0.00 +% +% Reference length for pitching, rolling, and yawing non-dimensional moment +REF_LENGTH_MOMENT= 1.0 +% +% Reference area for force coefficients (0 implies automatic calculation) +REF_AREA= 1.0 +% +% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, +% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) +REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE + +% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% +% +% Marker of the Euler boundary (NONE = no marker) +%MARKER_EULER= ( LeftBoundary, RightBoundary ) +% +% Custom boundaries +%MARKER_CUSTOM= ( BottomBoundary, TopBoundary ) +MARKER_CUSTOM= ( BottomBoundary, LeftBoundary, RightBoundary, TopBoundary ) + +% ------------------------ SURFACES IDENTIFICATION ----------------------------% +% +% Marker(s) of the surface in the surface flow solution file +MARKER_PLOTTING = ( LeftBoundary, RightBoundary ) +% +% Marker(s) of the surface where the non-dimensional coefficients are evaluated. +MARKER_MONITORING = ( LeftBoundary, RightBoundary ) +% +% Marker(s) of the surface where obj. func. (design problem) will be evaluated +MARKER_DESIGNING = ( LeftBoundary, RightBoundary ) + +% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% +% +% Courant-Friedrichs-Lewy condition of the finest grid +CFL_NUMBER= 2.5 +%CFL_NUMBER= 0.2 % For AUSM +% +% Number of total iterations +EXT_ITER= 10000 +%EXT_ITER= 1 +% +% Runge-Kutta alpha coefficients +%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5, 1.0 ) +RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) + +% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% +% +% Convective numerical method (DG) +NUM_METHOD_FEM_FLOW= DG +% +% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) +RIEMANN_SOLVER_FEM= ROE +%RIEMANN_SOLVER_FEM= AUSM +% +% Constant factor applied for quadrature with straight elements (2.0 by default) +QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 +%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 +% +% Constant factor applied for quadrature with curved elements (3.0 by default) +QUADRATURE_FACTOR_CURVED_FEM = 3.0 +%QUADRATURE_FACTOR_CURVED_FEM = 2.0 +% +% Time discretization (RUNGE-KUTTA_EXPLICIT) +TIME_DISCRE_FEM_FLOW= RUNGE-KUTTA_EXPLICIT +% + +% --------------------------- CONVERGENCE PARAMETERS --------------------------% +% +% Convergence criteria (CAUCHY, RESIDUAL) +CONV_CRITERIA= RESIDUAL +% +% +% Min value of the residual (log10 of the residual) +CONV_RESIDUAL_MINVAL= -8 +% +% Start Cauchy criteria at iteration number +CONV_STARTITER= 10 +% +% Number of elements to apply the criteria +CONV_CAUCHY_ELEMS= 100 +% +% Epsilon to control the series convergence +CONV_CAUCHY_EPS= 1E-6 +% + +% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% +% Mesh input file +MESH_FILENAME= Quad100X50_nPoly4.su2 +% +% Mesh input file format (SU2, CGNS, NETCDF_ASCII) +MESH_FORMAT= SU2 +% +% Mesh output file +MESH_OUT_FILENAME= mesh_out.su2 +% +% Restart flow input file +SOLUTION_FILENAME= solution_flow.dat +% +% Restart adjoint input file +SOLUTION_ADJ_FILENAME= solution_adj.dat +% +% Output tabular format (CSV, TECPLOT) +TABULAR_FORMAT= CSV +% +% Output file convergence history (w/o extension) +CONV_FILENAME= history +% +% Output file restart flow +RESTART_FILENAME= restart_flow.dat +% +% Output file restart adjoint +RESTART_ADJ_FILENAME= restart_adj.dat +% +% Output file flow (w/o extension) variables +VOLUME_FILENAME= flow +% +% Output file adjoint (w/o extension) variables +VOLUME_ADJ_FILENAME= adjoint +% +% Output Objective function gradient (using continuous adjoint) +GRAD_OBJFUNC_FILENAME= of_grad.dat +% +% Output file surface flow coefficient (w/o extension) +SURFACE_FILENAME= surface_flow +% +% Output file surface adjoint coefficient (w/o extension) +SURFACE_ADJ_FILENAME= surface_adjoint +% +% Writing solution file frequency +OUTPUT_WRT_FREQ= 5000 +% +SCREEN_WRT_FREQ_INNER= 100 diff --git a/TestCases/hom_euler/Ringleb/Quad100X50_nPoly4/Ringleb_WallBC.cfg b/TestCases/hom_euler/Ringleb/Quad100X50_nPoly4/Ringleb_WallBC.cfg index 3fa884f748d..68e47482d26 100644 --- a/TestCases/hom_euler/Ringleb/Quad100X50_nPoly4/Ringleb_WallBC.cfg +++ b/TestCases/hom_euler/Ringleb/Quad100X50_nPoly4/Ringleb_WallBC.cfg @@ -1,180 +1,179 @@ -% -% Ringleb test case: Make sure to compile the executable with the -% flag -DRINGLEB to set the appropriate initial and boundary conditions. -% -% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% -% -% Physical governing equations (EULER, NAVIER_STOKES, -% FEM_EULER, FEM_NAVIER_STOKES, -% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, -% POISSON_EQUATION) -SOLVER= FEM_EULER -% -% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) -MATH_PROBLEM= DIRECT -% -% Restart solution (NO, YES) -RESTART_SOL= NO -%RESTART_SOL= YES - -% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% -% -% Mach number (non-dimensional, based on the free-stream values) -MACH_NUMBER= 0.8 -% -% Angle of attack (degrees) -AoA= 0.0 -% -% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) -FREESTREAM_PRESSURE= 101325.0 -% -% Free-stream temperature (273.15 K by default) -FREESTREAM_TEMPERATURE= 273.15 - -% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% -% -% Ratio of specific heats (1.4 (air), only for compressible flows) -GAMMA_VALUE= 1.4 -% -% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) -GAS_CONSTANT= 287.87 - -% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% -% -% Reference origin for moment computation -REF_ORIGIN_MOMENT_X = 0.25 -REF_ORIGIN_MOMENT_Y = 0.00 -REF_ORIGIN_MOMENT_Z = 0.00 -% -% Reference length for pitching, rolling, and yawing non-dimensional moment -REF_LENGTH_MOMENT= 1.0 -% -% Reference area for force coefficients (0 implies automatic calculation) -REF_AREA= 1.0 -% -% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, -% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) -REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE - -% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% -% -% Marker of the Euler boundary (NONE = no marker) -MARKER_EULER= ( LeftBoundary, RightBoundary ) -% -% Custom boundaries -MARKER_CUSTOM= ( BottomBoundary, TopBoundary ) -%MARKER_CUSTOM= ( BottomBoundary, LeftBoundary, RightBoundary, TopBoundary ) - -% ------------------------ SURFACES IDENTIFICATION ----------------------------% -% -% Marker(s) of the surface in the surface flow solution file -MARKER_PLOTTING = ( LeftBoundary, RightBoundary ) -% -% Marker(s) of the surface where the non-dimensional coefficients are evaluated. -MARKER_MONITORING = ( LeftBoundary, RightBoundary ) -% -% Marker(s) of the surface where obj. func. (design problem) will be evaluated -MARKER_DESIGNING = ( LeftBoundary, RightBoundary ) - -% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% -% -% Courant-Friedrichs-Lewy condition of the finest grid -CFL_NUMBER= 2.5 -%CFL_NUMBER= 0.2 % For AUSM -% -% Number of total iterations -EXT_ITER= 10000 -%EXT_ITER= 1 -% -% Runge-Kutta alpha coefficients -%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5, 1.0 ) -RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) - -% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% -% -% Convective numerical method (DG) -NUM_METHOD_FEM_FLOW= DG -% -% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) -RIEMANN_SOLVER_FEM= ROE -%RIEMANN_SOLVER_FEM= AUSM -% -% Constant factor applied for quadrature with straight elements (2.0 by default) -QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 -%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 -% -% Constant factor applied for quadrature with curved elements (3.0 by default) -QUADRATURE_FACTOR_CURVED_FEM = 3.0 -%QUADRATURE_FACTOR_CURVED_FEM = 2.0 -% -% Time discretization (RUNGE-KUTTA_EXPLICIT) -TIME_DISCRE_FEM_FLOW= RUNGE-KUTTA_EXPLICIT -% - -% --------------------------- CONVERGENCE PARAMETERS --------------------------% -% -% Convergence criteria (CAUCHY, RESIDUAL) -CONV_CRITERIA= RESIDUAL -% -% -% Min value of the residual (log10 of the residual) -CONV_RESIDUAL_MINVAL= -8 -% -% Start Cauchy criteria at iteration number -CONV_STARTITER= 10 -% -% Number of elements to apply the criteria -CONV_CAUCHY_ELEMS= 100 -% -% Epsilon to control the series convergence -CONV_CAUCHY_EPS= 1E-6 -% - -% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% -% Mesh input file -MESH_FILENAME= Quad100X50_nPoly4.su2 -% -% Mesh input file format (SU2, CGNS, NETCDF_ASCII) -MESH_FORMAT= SU2 -% -% Mesh output file -MESH_OUT_FILENAME= mesh_out.su2 -% -% Restart flow input file -SOLUTION_FILENAME= solution_flow.dat -% -% Restart adjoint input file -SOLUTION_ADJ_FILENAME= solution_adj.dat -% -% Output tabular format (CSV, TECPLOT) -TABULAR_FORMAT= CSV -% -% Output file convergence history (w/o extension) -CONV_FILENAME= history -% -% Output file restart flow -RESTART_FILENAME= restart_flow.dat -% -% Output file restart adjoint -RESTART_ADJ_FILENAME= restart_adj.dat -% -% Output file flow (w/o extension) variables -VOLUME_FILENAME= flow -% -% Output file adjoint (w/o extension) variables -VOLUME_ADJ_FILENAME= adjoint -% -% Output Objective function gradient (using continuous adjoint) -GRAD_OBJFUNC_FILENAME= of_grad.dat -% -% Output file surface flow coefficient (w/o extension) -SURFACE_FILENAME= surface_flow -% -% Output file surface adjoint coefficient (w/o extension) -SURFACE_ADJ_FILENAME= surface_adjoint -% -% Writing solution file frequency -OUTPUT_WRT_FREQ= 5000 -% -% Writing convergence history frequency -WRT_CON_FREQ= 100 +% +% Ringleb test case: Make sure to compile the executable with the +% flag -DRINGLEB to set the appropriate initial and boundary conditions. +% +% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% +% +% Physical governing equations (EULER, NAVIER_STOKES, +% FEM_EULER, FEM_NAVIER_STOKES, +% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, +% POISSON_EQUATION) +SOLVER= FEM_EULER +% +% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) +MATH_PROBLEM= DIRECT +% +% Restart solution (NO, YES) +RESTART_SOL= NO +%RESTART_SOL= YES + +% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% +% +% Mach number (non-dimensional, based on the free-stream values) +MACH_NUMBER= 0.8 +% +% Angle of attack (degrees) +AoA= 0.0 +% +% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) +FREESTREAM_PRESSURE= 101325.0 +% +% Free-stream temperature (273.15 K by default) +FREESTREAM_TEMPERATURE= 273.15 + +% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% +% +% Ratio of specific heats (1.4 (air), only for compressible flows) +GAMMA_VALUE= 1.4 +% +% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) +GAS_CONSTANT= 287.87 + +% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% +% +% Reference origin for moment computation +REF_ORIGIN_MOMENT_X = 0.25 +REF_ORIGIN_MOMENT_Y = 0.00 +REF_ORIGIN_MOMENT_Z = 0.00 +% +% Reference length for pitching, rolling, and yawing non-dimensional moment +REF_LENGTH_MOMENT= 1.0 +% +% Reference area for force coefficients (0 implies automatic calculation) +REF_AREA= 1.0 +% +% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, +% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) +REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE + +% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% +% +% Marker of the Euler boundary (NONE = no marker) +MARKER_EULER= ( LeftBoundary, RightBoundary ) +% +% Custom boundaries +MARKER_CUSTOM= ( BottomBoundary, TopBoundary ) +%MARKER_CUSTOM= ( BottomBoundary, LeftBoundary, RightBoundary, TopBoundary ) + +% ------------------------ SURFACES IDENTIFICATION ----------------------------% +% +% Marker(s) of the surface in the surface flow solution file +MARKER_PLOTTING = ( LeftBoundary, RightBoundary ) +% +% Marker(s) of the surface where the non-dimensional coefficients are evaluated. +MARKER_MONITORING = ( LeftBoundary, RightBoundary ) +% +% Marker(s) of the surface where obj. func. (design problem) will be evaluated +MARKER_DESIGNING = ( LeftBoundary, RightBoundary ) + +% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% +% +% Courant-Friedrichs-Lewy condition of the finest grid +CFL_NUMBER= 2.5 +%CFL_NUMBER= 0.2 % For AUSM +% +% Number of total iterations +EXT_ITER= 10000 +%EXT_ITER= 1 +% +% Runge-Kutta alpha coefficients +%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5, 1.0 ) +RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) + +% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% +% +% Convective numerical method (DG) +NUM_METHOD_FEM_FLOW= DG +% +% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) +RIEMANN_SOLVER_FEM= ROE +%RIEMANN_SOLVER_FEM= AUSM +% +% Constant factor applied for quadrature with straight elements (2.0 by default) +QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 +%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 +% +% Constant factor applied for quadrature with curved elements (3.0 by default) +QUADRATURE_FACTOR_CURVED_FEM = 3.0 +%QUADRATURE_FACTOR_CURVED_FEM = 2.0 +% +% Time discretization (RUNGE-KUTTA_EXPLICIT) +TIME_DISCRE_FEM_FLOW= RUNGE-KUTTA_EXPLICIT +% + +% --------------------------- CONVERGENCE PARAMETERS --------------------------% +% +% Convergence criteria (CAUCHY, RESIDUAL) +CONV_CRITERIA= RESIDUAL +% +% +% Min value of the residual (log10 of the residual) +CONV_RESIDUAL_MINVAL= -8 +% +% Start Cauchy criteria at iteration number +CONV_STARTITER= 10 +% +% Number of elements to apply the criteria +CONV_CAUCHY_ELEMS= 100 +% +% Epsilon to control the series convergence +CONV_CAUCHY_EPS= 1E-6 +% + +% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% +% Mesh input file +MESH_FILENAME= Quad100X50_nPoly4.su2 +% +% Mesh input file format (SU2, CGNS, NETCDF_ASCII) +MESH_FORMAT= SU2 +% +% Mesh output file +MESH_OUT_FILENAME= mesh_out.su2 +% +% Restart flow input file +SOLUTION_FILENAME= solution_flow.dat +% +% Restart adjoint input file +SOLUTION_ADJ_FILENAME= solution_adj.dat +% +% Output tabular format (CSV, TECPLOT) +TABULAR_FORMAT= CSV +% +% Output file convergence history (w/o extension) +CONV_FILENAME= history +% +% Output file restart flow +RESTART_FILENAME= restart_flow.dat +% +% Output file restart adjoint +RESTART_ADJ_FILENAME= restart_adj.dat +% +% Output file flow (w/o extension) variables +VOLUME_FILENAME= flow +% +% Output file adjoint (w/o extension) variables +VOLUME_ADJ_FILENAME= adjoint +% +% Output Objective function gradient (using continuous adjoint) +GRAD_OBJFUNC_FILENAME= of_grad.dat +% +% Output file surface flow coefficient (w/o extension) +SURFACE_FILENAME= surface_flow +% +% Output file surface adjoint coefficient (w/o extension) +SURFACE_ADJ_FILENAME= surface_adjoint +% +% Writing solution file frequency +OUTPUT_WRT_FREQ= 5000 +% +SCREEN_WRT_FREQ_INNER= 100 diff --git a/TestCases/hom_euler/Ringleb/Quad200X100_nPoly4/Ringleb.cfg b/TestCases/hom_euler/Ringleb/Quad200X100_nPoly4/Ringleb.cfg index 5f285ddf260..49768c9980c 100644 --- a/TestCases/hom_euler/Ringleb/Quad200X100_nPoly4/Ringleb.cfg +++ b/TestCases/hom_euler/Ringleb/Quad200X100_nPoly4/Ringleb.cfg @@ -1,180 +1,179 @@ -% -% Ringleb test case: Make sure to compile the executable with the -% flag -DRINGLEB to set the appropriate initial and boundary conditions. -% -% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% -% -% Physical governing equations (EULER, NAVIER_STOKES, -% FEM_EULER, FEM_NAVIER_STOKES, -% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, -% POISSON_EQUATION) -SOLVER= FEM_EULER -% -% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) -MATH_PROBLEM= DIRECT -% -% Restart solution (NO, YES) -RESTART_SOL= NO -%RESTART_SOL= YES - -% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% -% -% Mach number (non-dimensional, based on the free-stream values) -MACH_NUMBER= 0.8 -% -% Angle of attack (degrees) -AoA= 0.0 -% -% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) -FREESTREAM_PRESSURE= 101325.0 -% -% Free-stream temperature (273.15 K by default) -FREESTREAM_TEMPERATURE= 273.15 - -% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% -% -% Ratio of specific heats (1.4 (air), only for compressible flows) -GAMMA_VALUE= 1.4 -% -% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) -GAS_CONSTANT= 287.87 - -% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% -% -% Reference origin for moment computation -REF_ORIGIN_MOMENT_X = 0.25 -REF_ORIGIN_MOMENT_Y = 0.00 -REF_ORIGIN_MOMENT_Z = 0.00 -% -% Reference length for pitching, rolling, and yawing non-dimensional moment -REF_LENGTH_MOMENT= 1.0 -% -% Reference area for force coefficients (0 implies automatic calculation) -REF_AREA= 1.0 -% -% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, -% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) -REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE - -% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% -% -% Marker of the Euler boundary (NONE = no marker) -%MARKER_EULER= ( LeftBoundary, RightBoundary ) -% -% Custom boundaries -%MARKER_CUSTOM= ( BottomBoundary, TopBoundary ) -MARKER_CUSTOM= ( BottomBoundary, LeftBoundary, RightBoundary, TopBoundary ) - -% ------------------------ SURFACES IDENTIFICATION ----------------------------% -% -% Marker(s) of the surface in the surface flow solution file -MARKER_PLOTTING = ( LeftBoundary, RightBoundary ) -% -% Marker(s) of the surface where the non-dimensional coefficients are evaluated. -MARKER_MONITORING = ( LeftBoundary, RightBoundary ) -% -% Marker(s) of the surface where obj. func. (design problem) will be evaluated -MARKER_DESIGNING = ( LeftBoundary, RightBoundary ) - -% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% -% -% Courant-Friedrichs-Lewy condition of the finest grid -CFL_NUMBER= 2.5 -%CFL_NUMBER= 0.2 % For AUSM -% -% Number of total iterations -EXT_ITER= 10000 -%EXT_ITER= 1 -% -% Runge-Kutta alpha coefficients -%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5, 1.0 ) -RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) - -% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% -% -% Convective numerical method (DG) -NUM_METHOD_FEM_FLOW= DG -% -% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) -RIEMANN_SOLVER_FEM= ROE -%RIEMANN_SOLVER_FEM= AUSM -% -% Constant factor applied for quadrature with straight elements (2.0 by default) -QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 -%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 -% -% Constant factor applied for quadrature with curved elements (3.0 by default) -QUADRATURE_FACTOR_CURVED_FEM = 3.0 -%QUADRATURE_FACTOR_CURVED_FEM = 2.0 -% -% Time discretization (RUNGE-KUTTA_EXPLICIT) -TIME_DISCRE_FEM_FLOW= RUNGE-KUTTA_EXPLICIT -% - -% --------------------------- CONVERGENCE PARAMETERS --------------------------% -% -% Convergence criteria (CAUCHY, RESIDUAL) -CONV_CRITERIA= RESIDUAL -% -% -% Min value of the residual (log10 of the residual) -CONV_RESIDUAL_MINVAL= -8 -% -% Start Cauchy criteria at iteration number -CONV_STARTITER= 10 -% -% Number of elements to apply the criteria -CONV_CAUCHY_ELEMS= 100 -% -% Epsilon to control the series convergence -CONV_CAUCHY_EPS= 1E-6 -% - -% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% -% Mesh input file -MESH_FILENAME= Quad200X100_nPoly4.su2 -% -% Mesh input file format (SU2, CGNS, NETCDF_ASCII) -MESH_FORMAT= SU2 -% -% Mesh output file -MESH_OUT_FILENAME= mesh_out.su2 -% -% Restart flow input file -SOLUTION_FILENAME= solution_flow.dat -% -% Restart adjoint input file -SOLUTION_ADJ_FILENAME= solution_adj.dat -% -% Output tabular format (CSV, TECPLOT) -TABULAR_FORMAT= CSV -% -% Output file convergence history (w/o extension) -CONV_FILENAME= history -% -% Output file restart flow -RESTART_FILENAME= restart_flow.dat -% -% Output file restart adjoint -RESTART_ADJ_FILENAME= restart_adj.dat -% -% Output file flow (w/o extension) variables -VOLUME_FILENAME= flow -% -% Output file adjoint (w/o extension) variables -VOLUME_ADJ_FILENAME= adjoint -% -% Output Objective function gradient (using continuous adjoint) -GRAD_OBJFUNC_FILENAME= of_grad.dat -% -% Output file surface flow coefficient (w/o extension) -SURFACE_FILENAME= surface_flow -% -% Output file surface adjoint coefficient (w/o extension) -SURFACE_ADJ_FILENAME= surface_adjoint -% -% Writing solution file frequency -OUTPUT_WRT_FREQ= 5000 -% -% Writing convergence history frequency -WRT_CON_FREQ= 100 +% +% Ringleb test case: Make sure to compile the executable with the +% flag -DRINGLEB to set the appropriate initial and boundary conditions. +% +% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% +% +% Physical governing equations (EULER, NAVIER_STOKES, +% FEM_EULER, FEM_NAVIER_STOKES, +% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, +% POISSON_EQUATION) +SOLVER= FEM_EULER +% +% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) +MATH_PROBLEM= DIRECT +% +% Restart solution (NO, YES) +RESTART_SOL= NO +%RESTART_SOL= YES + +% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% +% +% Mach number (non-dimensional, based on the free-stream values) +MACH_NUMBER= 0.8 +% +% Angle of attack (degrees) +AoA= 0.0 +% +% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) +FREESTREAM_PRESSURE= 101325.0 +% +% Free-stream temperature (273.15 K by default) +FREESTREAM_TEMPERATURE= 273.15 + +% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% +% +% Ratio of specific heats (1.4 (air), only for compressible flows) +GAMMA_VALUE= 1.4 +% +% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) +GAS_CONSTANT= 287.87 + +% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% +% +% Reference origin for moment computation +REF_ORIGIN_MOMENT_X = 0.25 +REF_ORIGIN_MOMENT_Y = 0.00 +REF_ORIGIN_MOMENT_Z = 0.00 +% +% Reference length for pitching, rolling, and yawing non-dimensional moment +REF_LENGTH_MOMENT= 1.0 +% +% Reference area for force coefficients (0 implies automatic calculation) +REF_AREA= 1.0 +% +% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, +% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) +REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE + +% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% +% +% Marker of the Euler boundary (NONE = no marker) +%MARKER_EULER= ( LeftBoundary, RightBoundary ) +% +% Custom boundaries +%MARKER_CUSTOM= ( BottomBoundary, TopBoundary ) +MARKER_CUSTOM= ( BottomBoundary, LeftBoundary, RightBoundary, TopBoundary ) + +% ------------------------ SURFACES IDENTIFICATION ----------------------------% +% +% Marker(s) of the surface in the surface flow solution file +MARKER_PLOTTING = ( LeftBoundary, RightBoundary ) +% +% Marker(s) of the surface where the non-dimensional coefficients are evaluated. +MARKER_MONITORING = ( LeftBoundary, RightBoundary ) +% +% Marker(s) of the surface where obj. func. (design problem) will be evaluated +MARKER_DESIGNING = ( LeftBoundary, RightBoundary ) + +% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% +% +% Courant-Friedrichs-Lewy condition of the finest grid +CFL_NUMBER= 2.5 +%CFL_NUMBER= 0.2 % For AUSM +% +% Number of total iterations +EXT_ITER= 10000 +%EXT_ITER= 1 +% +% Runge-Kutta alpha coefficients +%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5, 1.0 ) +RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) + +% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% +% +% Convective numerical method (DG) +NUM_METHOD_FEM_FLOW= DG +% +% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) +RIEMANN_SOLVER_FEM= ROE +%RIEMANN_SOLVER_FEM= AUSM +% +% Constant factor applied for quadrature with straight elements (2.0 by default) +QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 +%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 +% +% Constant factor applied for quadrature with curved elements (3.0 by default) +QUADRATURE_FACTOR_CURVED_FEM = 3.0 +%QUADRATURE_FACTOR_CURVED_FEM = 2.0 +% +% Time discretization (RUNGE-KUTTA_EXPLICIT) +TIME_DISCRE_FEM_FLOW= RUNGE-KUTTA_EXPLICIT +% + +% --------------------------- CONVERGENCE PARAMETERS --------------------------% +% +% Convergence criteria (CAUCHY, RESIDUAL) +CONV_CRITERIA= RESIDUAL +% +% +% Min value of the residual (log10 of the residual) +CONV_RESIDUAL_MINVAL= -8 +% +% Start Cauchy criteria at iteration number +CONV_STARTITER= 10 +% +% Number of elements to apply the criteria +CONV_CAUCHY_ELEMS= 100 +% +% Epsilon to control the series convergence +CONV_CAUCHY_EPS= 1E-6 +% + +% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% +% Mesh input file +MESH_FILENAME= Quad200X100_nPoly4.su2 +% +% Mesh input file format (SU2, CGNS, NETCDF_ASCII) +MESH_FORMAT= SU2 +% +% Mesh output file +MESH_OUT_FILENAME= mesh_out.su2 +% +% Restart flow input file +SOLUTION_FILENAME= solution_flow.dat +% +% Restart adjoint input file +SOLUTION_ADJ_FILENAME= solution_adj.dat +% +% Output tabular format (CSV, TECPLOT) +TABULAR_FORMAT= CSV +% +% Output file convergence history (w/o extension) +CONV_FILENAME= history +% +% Output file restart flow +RESTART_FILENAME= restart_flow.dat +% +% Output file restart adjoint +RESTART_ADJ_FILENAME= restart_adj.dat +% +% Output file flow (w/o extension) variables +VOLUME_FILENAME= flow +% +% Output file adjoint (w/o extension) variables +VOLUME_ADJ_FILENAME= adjoint +% +% Output Objective function gradient (using continuous adjoint) +GRAD_OBJFUNC_FILENAME= of_grad.dat +% +% Output file surface flow coefficient (w/o extension) +SURFACE_FILENAME= surface_flow +% +% Output file surface adjoint coefficient (w/o extension) +SURFACE_ADJ_FILENAME= surface_adjoint +% +% Writing solution file frequency +OUTPUT_WRT_FREQ= 5000 +% +SCREEN_WRT_FREQ_INNER= 100 diff --git a/TestCases/hom_euler/Ringleb/Quad200X100_nPoly4/Ringleb_WallBC.cfg b/TestCases/hom_euler/Ringleb/Quad200X100_nPoly4/Ringleb_WallBC.cfg index de090fc0993..c2ce741b173 100644 --- a/TestCases/hom_euler/Ringleb/Quad200X100_nPoly4/Ringleb_WallBC.cfg +++ b/TestCases/hom_euler/Ringleb/Quad200X100_nPoly4/Ringleb_WallBC.cfg @@ -1,180 +1,179 @@ -% -% Ringleb test case: Make sure to compile the executable with the -% flag -DRINGLEB to set the appropriate initial and boundary conditions. -% -% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% -% -% Physical governing equations (EULER, NAVIER_STOKES, -% FEM_EULER, FEM_NAVIER_STOKES, -% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, -% POISSON_EQUATION) -SOLVER= FEM_EULER -% -% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) -MATH_PROBLEM= DIRECT -% -% Restart solution (NO, YES) -RESTART_SOL= NO -%RESTART_SOL= YES - -% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% -% -% Mach number (non-dimensional, based on the free-stream values) -MACH_NUMBER= 0.8 -% -% Angle of attack (degrees) -AoA= 0.0 -% -% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) -FREESTREAM_PRESSURE= 101325.0 -% -% Free-stream temperature (273.15 K by default) -FREESTREAM_TEMPERATURE= 273.15 - -% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% -% -% Ratio of specific heats (1.4 (air), only for compressible flows) -GAMMA_VALUE= 1.4 -% -% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) -GAS_CONSTANT= 287.87 - -% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% -% -% Reference origin for moment computation -REF_ORIGIN_MOMENT_X = 0.25 -REF_ORIGIN_MOMENT_Y = 0.00 -REF_ORIGIN_MOMENT_Z = 0.00 -% -% Reference length for pitching, rolling, and yawing non-dimensional moment -REF_LENGTH_MOMENT= 1.0 -% -% Reference area for force coefficients (0 implies automatic calculation) -REF_AREA= 1.0 -% -% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, -% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) -REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE - -% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% -% -% Marker of the Euler boundary (NONE = no marker) -MARKER_EULER= ( LeftBoundary, RightBoundary ) -% -% Custom boundaries -MARKER_CUSTOM= ( BottomBoundary, TopBoundary ) -%MARKER_CUSTOM= ( BottomBoundary, LeftBoundary, RightBoundary, TopBoundary ) - -% ------------------------ SURFACES IDENTIFICATION ----------------------------% -% -% Marker(s) of the surface in the surface flow solution file -MARKER_PLOTTING = ( LeftBoundary, RightBoundary ) -% -% Marker(s) of the surface where the non-dimensional coefficients are evaluated. -MARKER_MONITORING = ( LeftBoundary, RightBoundary ) -% -% Marker(s) of the surface where obj. func. (design problem) will be evaluated -MARKER_DESIGNING = ( LeftBoundary, RightBoundary ) - -% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% -% -% Courant-Friedrichs-Lewy condition of the finest grid -CFL_NUMBER= 2.5 -%CFL_NUMBER= 0.2 % For AUSM -% -% Number of total iterations -EXT_ITER= 10000 -%EXT_ITER= 1 -% -% Runge-Kutta alpha coefficients -%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5, 1.0 ) -RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) - -% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% -% -% Convective numerical method (DG) -NUM_METHOD_FEM_FLOW= DG -% -% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) -RIEMANN_SOLVER_FEM= ROE -%RIEMANN_SOLVER_FEM= AUSM -% -% Constant factor applied for quadrature with straight elements (2.0 by default) -QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 -%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 -% -% Constant factor applied for quadrature with curved elements (3.0 by default) -QUADRATURE_FACTOR_CURVED_FEM = 3.0 -%QUADRATURE_FACTOR_CURVED_FEM = 2.0 -% -% Time discretization (RUNGE-KUTTA_EXPLICIT) -TIME_DISCRE_FEM_FLOW= RUNGE-KUTTA_EXPLICIT -% - -% --------------------------- CONVERGENCE PARAMETERS --------------------------% -% -% Convergence criteria (CAUCHY, RESIDUAL) -CONV_CRITERIA= RESIDUAL -% -% -% Min value of the residual (log10 of the residual) -CONV_RESIDUAL_MINVAL= -8 -% -% Start Cauchy criteria at iteration number -CONV_STARTITER= 10 -% -% Number of elements to apply the criteria -CONV_CAUCHY_ELEMS= 100 -% -% Epsilon to control the series convergence -CONV_CAUCHY_EPS= 1E-6 -% - -% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% -% Mesh input file -MESH_FILENAME= Quad200X100_nPoly4.su2 -% -% Mesh input file format (SU2, CGNS, NETCDF_ASCII) -MESH_FORMAT= SU2 -% -% Mesh output file -MESH_OUT_FILENAME= mesh_out.su2 -% -% Restart flow input file -SOLUTION_FILENAME= solution_flow.dat -% -% Restart adjoint input file -SOLUTION_ADJ_FILENAME= solution_adj.dat -% -% Output tabular format (CSV, TECPLOT) -TABULAR_FORMAT= CSV -% -% Output file convergence history (w/o extension) -CONV_FILENAME= history -% -% Output file restart flow -RESTART_FILENAME= restart_flow.dat -% -% Output file restart adjoint -RESTART_ADJ_FILENAME= restart_adj.dat -% -% Output file flow (w/o extension) variables -VOLUME_FILENAME= flow -% -% Output file adjoint (w/o extension) variables -VOLUME_ADJ_FILENAME= adjoint -% -% Output Objective function gradient (using continuous adjoint) -GRAD_OBJFUNC_FILENAME= of_grad.dat -% -% Output file surface flow coefficient (w/o extension) -SURFACE_FILENAME= surface_flow -% -% Output file surface adjoint coefficient (w/o extension) -SURFACE_ADJ_FILENAME= surface_adjoint -% -% Writing solution file frequency -OUTPUT_WRT_FREQ= 5000 -% -% Writing convergence history frequency -WRT_CON_FREQ= 100 +% +% Ringleb test case: Make sure to compile the executable with the +% flag -DRINGLEB to set the appropriate initial and boundary conditions. +% +% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% +% +% Physical governing equations (EULER, NAVIER_STOKES, +% FEM_EULER, FEM_NAVIER_STOKES, +% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, +% POISSON_EQUATION) +SOLVER= FEM_EULER +% +% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) +MATH_PROBLEM= DIRECT +% +% Restart solution (NO, YES) +RESTART_SOL= NO +%RESTART_SOL= YES + +% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% +% +% Mach number (non-dimensional, based on the free-stream values) +MACH_NUMBER= 0.8 +% +% Angle of attack (degrees) +AoA= 0.0 +% +% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) +FREESTREAM_PRESSURE= 101325.0 +% +% Free-stream temperature (273.15 K by default) +FREESTREAM_TEMPERATURE= 273.15 + +% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% +% +% Ratio of specific heats (1.4 (air), only for compressible flows) +GAMMA_VALUE= 1.4 +% +% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) +GAS_CONSTANT= 287.87 + +% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% +% +% Reference origin for moment computation +REF_ORIGIN_MOMENT_X = 0.25 +REF_ORIGIN_MOMENT_Y = 0.00 +REF_ORIGIN_MOMENT_Z = 0.00 +% +% Reference length for pitching, rolling, and yawing non-dimensional moment +REF_LENGTH_MOMENT= 1.0 +% +% Reference area for force coefficients (0 implies automatic calculation) +REF_AREA= 1.0 +% +% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, +% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) +REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE + +% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% +% +% Marker of the Euler boundary (NONE = no marker) +MARKER_EULER= ( LeftBoundary, RightBoundary ) +% +% Custom boundaries +MARKER_CUSTOM= ( BottomBoundary, TopBoundary ) +%MARKER_CUSTOM= ( BottomBoundary, LeftBoundary, RightBoundary, TopBoundary ) + +% ------------------------ SURFACES IDENTIFICATION ----------------------------% +% +% Marker(s) of the surface in the surface flow solution file +MARKER_PLOTTING = ( LeftBoundary, RightBoundary ) +% +% Marker(s) of the surface where the non-dimensional coefficients are evaluated. +MARKER_MONITORING = ( LeftBoundary, RightBoundary ) +% +% Marker(s) of the surface where obj. func. (design problem) will be evaluated +MARKER_DESIGNING = ( LeftBoundary, RightBoundary ) + +% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% +% +% Courant-Friedrichs-Lewy condition of the finest grid +CFL_NUMBER= 2.5 +%CFL_NUMBER= 0.2 % For AUSM +% +% Number of total iterations +EXT_ITER= 10000 +%EXT_ITER= 1 +% +% Runge-Kutta alpha coefficients +%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5, 1.0 ) +RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) + +% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% +% +% Convective numerical method (DG) +NUM_METHOD_FEM_FLOW= DG +% +% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) +RIEMANN_SOLVER_FEM= ROE +%RIEMANN_SOLVER_FEM= AUSM +% +% Constant factor applied for quadrature with straight elements (2.0 by default) +QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 +%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 +% +% Constant factor applied for quadrature with curved elements (3.0 by default) +QUADRATURE_FACTOR_CURVED_FEM = 3.0 +%QUADRATURE_FACTOR_CURVED_FEM = 2.0 +% +% Time discretization (RUNGE-KUTTA_EXPLICIT) +TIME_DISCRE_FEM_FLOW= RUNGE-KUTTA_EXPLICIT +% + +% --------------------------- CONVERGENCE PARAMETERS --------------------------% +% +% Convergence criteria (CAUCHY, RESIDUAL) +CONV_CRITERIA= RESIDUAL +% +% +% Min value of the residual (log10 of the residual) +CONV_RESIDUAL_MINVAL= -8 +% +% Start Cauchy criteria at iteration number +CONV_STARTITER= 10 +% +% Number of elements to apply the criteria +CONV_CAUCHY_ELEMS= 100 +% +% Epsilon to control the series convergence +CONV_CAUCHY_EPS= 1E-6 +% + +% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% +% Mesh input file +MESH_FILENAME= Quad200X100_nPoly4.su2 +% +% Mesh input file format (SU2, CGNS, NETCDF_ASCII) +MESH_FORMAT= SU2 +% +% Mesh output file +MESH_OUT_FILENAME= mesh_out.su2 +% +% Restart flow input file +SOLUTION_FILENAME= solution_flow.dat +% +% Restart adjoint input file +SOLUTION_ADJ_FILENAME= solution_adj.dat +% +% Output tabular format (CSV, TECPLOT) +TABULAR_FORMAT= CSV +% +% Output file convergence history (w/o extension) +CONV_FILENAME= history +% +% Output file restart flow +RESTART_FILENAME= restart_flow.dat +% +% Output file restart adjoint +RESTART_ADJ_FILENAME= restart_adj.dat +% +% Output file flow (w/o extension) variables +VOLUME_FILENAME= flow +% +% Output file adjoint (w/o extension) variables +VOLUME_ADJ_FILENAME= adjoint +% +% Output Objective function gradient (using continuous adjoint) +GRAD_OBJFUNC_FILENAME= of_grad.dat +% +% Output file surface flow coefficient (w/o extension) +SURFACE_FILENAME= surface_flow +% +% Output file surface adjoint coefficient (w/o extension) +SURFACE_ADJ_FILENAME= surface_adjoint +% +% Writing solution file frequency +OUTPUT_WRT_FREQ= 5000 +% +SCREEN_WRT_FREQ_INNER= 100 diff --git a/TestCases/hom_euler/Ringleb/Quad50X50_HalfGeom_nPoly4/Ringleb.cfg b/TestCases/hom_euler/Ringleb/Quad50X50_HalfGeom_nPoly4/Ringleb.cfg index 03092a2c350..19713d82a3d 100644 --- a/TestCases/hom_euler/Ringleb/Quad50X50_HalfGeom_nPoly4/Ringleb.cfg +++ b/TestCases/hom_euler/Ringleb/Quad50X50_HalfGeom_nPoly4/Ringleb.cfg @@ -1,180 +1,179 @@ -% -% Ringleb test case: Make sure to compile the executable with the -% flag -DRINGLEB to set the appropriate initial and boundary conditions. -% -% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% -% -% Physical governing equations (EULER, NAVIER_STOKES, -% FEM_EULER, FEM_NAVIER_STOKES, -% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, -% POISSON_EQUATION) -SOLVER= FEM_EULER -% -% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) -MATH_PROBLEM= DIRECT -% -% Restart solution (NO, YES) -RESTART_SOL= NO -%RESTART_SOL= YES - -% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% -% -% Mach number (non-dimensional, based on the free-stream values) -MACH_NUMBER= 0.8 -% -% Angle of attack (degrees) -AoA= 0.0 -% -% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) -FREESTREAM_PRESSURE= 101325.0 -% -% Free-stream temperature (273.15 K by default) -FREESTREAM_TEMPERATURE= 273.15 - -% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% -% -% Ratio of specific heats (1.4 (air), only for compressible flows) -GAMMA_VALUE= 1.4 -% -% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) -GAS_CONSTANT= 287.87 - -% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% -% -% Reference origin for moment computation -REF_ORIGIN_MOMENT_X = 0.25 -REF_ORIGIN_MOMENT_Y = 0.00 -REF_ORIGIN_MOMENT_Z = 0.00 -% -% Reference length for pitching, rolling, and yawing non-dimensional moment -REF_LENGTH_MOMENT= 1.0 -% -% Reference area for force coefficients (0 implies automatic calculation) -REF_AREA= 1.0 -% -% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, -% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) -REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE - -% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% -% -% Marker of the Euler boundary (NONE = no marker) -%MARKER_EULER= ( LeftBoundary, RightBoundary ) -% -% Custom boundaries -%MARKER_CUSTOM= ( BottomBoundary, TopBoundary ) -MARKER_CUSTOM= ( BottomBoundary, LeftBoundary, RightBoundary, TopBoundary ) - -% ------------------------ SURFACES IDENTIFICATION ----------------------------% -% -% Marker(s) of the surface in the surface flow solution file -MARKER_PLOTTING = ( LeftBoundary, RightBoundary ) -% -% Marker(s) of the surface where the non-dimensional coefficients are evaluated. -MARKER_MONITORING = ( LeftBoundary, RightBoundary ) -% -% Marker(s) of the surface where obj. func. (design problem) will be evaluated -MARKER_DESIGNING = ( LeftBoundary, RightBoundary ) - -% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% -% -% Courant-Friedrichs-Lewy condition of the finest grid -CFL_NUMBER= 2.5 -%CFL_NUMBER= 0.2 % For AUSM -% -% Number of total iterations -EXT_ITER= 10000 -%EXT_ITER= 1 -% -% Runge-Kutta alpha coefficients -%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5, 1.0 ) -RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) - -% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% -% -% Convective numerical method (DG) -NUM_METHOD_FEM_FLOW= DG -% -% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) -RIEMANN_SOLVER_FEM= ROE -%RIEMANN_SOLVER_FEM= AUSM -% -% Constant factor applied for quadrature with straight elements (2.0 by default) -QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 -%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 -% -% Constant factor applied for quadrature with curved elements (3.0 by default) -QUADRATURE_FACTOR_CURVED_FEM = 3.0 -%QUADRATURE_FACTOR_CURVED_FEM = 2.0 -% -% Time discretization (RUNGE-KUTTA_EXPLICIT) -TIME_DISCRE_FEM_FLOW= RUNGE-KUTTA_EXPLICIT -% - -% --------------------------- CONVERGENCE PARAMETERS --------------------------% -% -% Convergence criteria (CAUCHY, RESIDUAL) -CONV_CRITERIA= RESIDUAL -% -% -% Min value of the residual (log10 of the residual) -CONV_RESIDUAL_MINVAL= -8 -% -% Start Cauchy criteria at iteration number -CONV_STARTITER= 10 -% -% Number of elements to apply the criteria -CONV_CAUCHY_ELEMS= 100 -% -% Epsilon to control the series convergence -CONV_CAUCHY_EPS= 1E-6 -% - -% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% -% Mesh input file -MESH_FILENAME= Quad50X50_HalfGeom_nPoly4.su2 -% -% Mesh input file format (SU2, CGNS, NETCDF_ASCII) -MESH_FORMAT= SU2 -% -% Mesh output file -MESH_OUT_FILENAME= mesh_out.su2 -% -% Restart flow input file -SOLUTION_FILENAME= solution_flow.dat -% -% Restart adjoint input file -SOLUTION_ADJ_FILENAME= solution_adj.dat -% -% Output tabular format (CSV, TECPLOT) -TABULAR_FORMAT= CSV -% -% Output file convergence history (w/o extension) -CONV_FILENAME= history -% -% Output file restart flow -RESTART_FILENAME= restart_flow.dat -% -% Output file restart adjoint -RESTART_ADJ_FILENAME= restart_adj.dat -% -% Output file flow (w/o extension) variables -VOLUME_FILENAME= flow -% -% Output file adjoint (w/o extension) variables -VOLUME_ADJ_FILENAME= adjoint -% -% Output Objective function gradient (using continuous adjoint) -GRAD_OBJFUNC_FILENAME= of_grad.dat -% -% Output file surface flow coefficient (w/o extension) -SURFACE_FILENAME= surface_flow -% -% Output file surface adjoint coefficient (w/o extension) -SURFACE_ADJ_FILENAME= surface_adjoint -% -% Writing solution file frequency -OUTPUT_WRT_FREQ= 5000 -% -% Writing convergence history frequency -WRT_CON_FREQ= 100 +% +% Ringleb test case: Make sure to compile the executable with the +% flag -DRINGLEB to set the appropriate initial and boundary conditions. +% +% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% +% +% Physical governing equations (EULER, NAVIER_STOKES, +% FEM_EULER, FEM_NAVIER_STOKES, +% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, +% POISSON_EQUATION) +SOLVER= FEM_EULER +% +% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) +MATH_PROBLEM= DIRECT +% +% Restart solution (NO, YES) +RESTART_SOL= NO +%RESTART_SOL= YES + +% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% +% +% Mach number (non-dimensional, based on the free-stream values) +MACH_NUMBER= 0.8 +% +% Angle of attack (degrees) +AoA= 0.0 +% +% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) +FREESTREAM_PRESSURE= 101325.0 +% +% Free-stream temperature (273.15 K by default) +FREESTREAM_TEMPERATURE= 273.15 + +% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% +% +% Ratio of specific heats (1.4 (air), only for compressible flows) +GAMMA_VALUE= 1.4 +% +% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) +GAS_CONSTANT= 287.87 + +% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% +% +% Reference origin for moment computation +REF_ORIGIN_MOMENT_X = 0.25 +REF_ORIGIN_MOMENT_Y = 0.00 +REF_ORIGIN_MOMENT_Z = 0.00 +% +% Reference length for pitching, rolling, and yawing non-dimensional moment +REF_LENGTH_MOMENT= 1.0 +% +% Reference area for force coefficients (0 implies automatic calculation) +REF_AREA= 1.0 +% +% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, +% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) +REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE + +% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% +% +% Marker of the Euler boundary (NONE = no marker) +%MARKER_EULER= ( LeftBoundary, RightBoundary ) +% +% Custom boundaries +%MARKER_CUSTOM= ( BottomBoundary, TopBoundary ) +MARKER_CUSTOM= ( BottomBoundary, LeftBoundary, RightBoundary, TopBoundary ) + +% ------------------------ SURFACES IDENTIFICATION ----------------------------% +% +% Marker(s) of the surface in the surface flow solution file +MARKER_PLOTTING = ( LeftBoundary, RightBoundary ) +% +% Marker(s) of the surface where the non-dimensional coefficients are evaluated. +MARKER_MONITORING = ( LeftBoundary, RightBoundary ) +% +% Marker(s) of the surface where obj. func. (design problem) will be evaluated +MARKER_DESIGNING = ( LeftBoundary, RightBoundary ) + +% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% +% +% Courant-Friedrichs-Lewy condition of the finest grid +CFL_NUMBER= 2.5 +%CFL_NUMBER= 0.2 % For AUSM +% +% Number of total iterations +EXT_ITER= 10000 +%EXT_ITER= 1 +% +% Runge-Kutta alpha coefficients +%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5, 1.0 ) +RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) + +% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% +% +% Convective numerical method (DG) +NUM_METHOD_FEM_FLOW= DG +% +% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) +RIEMANN_SOLVER_FEM= ROE +%RIEMANN_SOLVER_FEM= AUSM +% +% Constant factor applied for quadrature with straight elements (2.0 by default) +QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 +%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 +% +% Constant factor applied for quadrature with curved elements (3.0 by default) +QUADRATURE_FACTOR_CURVED_FEM = 3.0 +%QUADRATURE_FACTOR_CURVED_FEM = 2.0 +% +% Time discretization (RUNGE-KUTTA_EXPLICIT) +TIME_DISCRE_FEM_FLOW= RUNGE-KUTTA_EXPLICIT +% + +% --------------------------- CONVERGENCE PARAMETERS --------------------------% +% +% Convergence criteria (CAUCHY, RESIDUAL) +CONV_CRITERIA= RESIDUAL +% +% +% Min value of the residual (log10 of the residual) +CONV_RESIDUAL_MINVAL= -8 +% +% Start Cauchy criteria at iteration number +CONV_STARTITER= 10 +% +% Number of elements to apply the criteria +CONV_CAUCHY_ELEMS= 100 +% +% Epsilon to control the series convergence +CONV_CAUCHY_EPS= 1E-6 +% + +% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% +% Mesh input file +MESH_FILENAME= Quad50X50_HalfGeom_nPoly4.su2 +% +% Mesh input file format (SU2, CGNS, NETCDF_ASCII) +MESH_FORMAT= SU2 +% +% Mesh output file +MESH_OUT_FILENAME= mesh_out.su2 +% +% Restart flow input file +SOLUTION_FILENAME= solution_flow.dat +% +% Restart adjoint input file +SOLUTION_ADJ_FILENAME= solution_adj.dat +% +% Output tabular format (CSV, TECPLOT) +TABULAR_FORMAT= CSV +% +% Output file convergence history (w/o extension) +CONV_FILENAME= history +% +% Output file restart flow +RESTART_FILENAME= restart_flow.dat +% +% Output file restart adjoint +RESTART_ADJ_FILENAME= restart_adj.dat +% +% Output file flow (w/o extension) variables +VOLUME_FILENAME= flow +% +% Output file adjoint (w/o extension) variables +VOLUME_ADJ_FILENAME= adjoint +% +% Output Objective function gradient (using continuous adjoint) +GRAD_OBJFUNC_FILENAME= of_grad.dat +% +% Output file surface flow coefficient (w/o extension) +SURFACE_FILENAME= surface_flow +% +% Output file surface adjoint coefficient (w/o extension) +SURFACE_ADJ_FILENAME= surface_adjoint +% +% Writing solution file frequency +OUTPUT_WRT_FREQ= 5000 +% +SCREEN_WRT_FREQ_INNER= 100 diff --git a/TestCases/hom_euler/Ringleb/Quad50X50_HalfGeom_nPoly4/Ringleb_WallBC.cfg b/TestCases/hom_euler/Ringleb/Quad50X50_HalfGeom_nPoly4/Ringleb_WallBC.cfg index 4731d75de3a..058f814ea50 100644 --- a/TestCases/hom_euler/Ringleb/Quad50X50_HalfGeom_nPoly4/Ringleb_WallBC.cfg +++ b/TestCases/hom_euler/Ringleb/Quad50X50_HalfGeom_nPoly4/Ringleb_WallBC.cfg @@ -1,180 +1,179 @@ -% -% Ringleb test case: Make sure to compile the executable with the -% flag -DRINGLEB to set the appropriate initial and boundary conditions. -% -% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% -% -% Physical governing equations (EULER, NAVIER_STOKES, -% FEM_EULER, FEM_NAVIER_STOKES, -% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, -% POISSON_EQUATION) -SOLVER= FEM_EULER -% -% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) -MATH_PROBLEM= DIRECT -% -% Restart solution (NO, YES) -RESTART_SOL= NO -%RESTART_SOL= YES - -% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% -% -% Mach number (non-dimensional, based on the free-stream values) -MACH_NUMBER= 0.8 -% -% Angle of attack (degrees) -AoA= 0.0 -% -% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) -FREESTREAM_PRESSURE= 101325.0 -% -% Free-stream temperature (273.15 K by default) -FREESTREAM_TEMPERATURE= 273.15 - -% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% -% -% Ratio of specific heats (1.4 (air), only for compressible flows) -GAMMA_VALUE= 1.4 -% -% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) -GAS_CONSTANT= 287.87 - -% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% -% -% Reference origin for moment computation -REF_ORIGIN_MOMENT_X = 0.25 -REF_ORIGIN_MOMENT_Y = 0.00 -REF_ORIGIN_MOMENT_Z = 0.00 -% -% Reference length for pitching, rolling, and yawing non-dimensional moment -REF_LENGTH_MOMENT= 1.0 -% -% Reference area for force coefficients (0 implies automatic calculation) -REF_AREA= 1.0 -% -% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, -% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) -REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE - -% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% -% -% Marker of the Euler boundary (NONE = no marker) -MARKER_EULER= ( LeftBoundary, RightBoundary ) -% -% Custom boundaries -MARKER_CUSTOM= ( BottomBoundary, TopBoundary ) -%MARKER_CUSTOM= ( BottomBoundary, LeftBoundary, RightBoundary, TopBoundary ) - -% ------------------------ SURFACES IDENTIFICATION ----------------------------% -% -% Marker(s) of the surface in the surface flow solution file -MARKER_PLOTTING = ( LeftBoundary, RightBoundary ) -% -% Marker(s) of the surface where the non-dimensional coefficients are evaluated. -MARKER_MONITORING = ( LeftBoundary, RightBoundary ) -% -% Marker(s) of the surface where obj. func. (design problem) will be evaluated -MARKER_DESIGNING = ( LeftBoundary, RightBoundary ) - -% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% -% -% Courant-Friedrichs-Lewy condition of the finest grid -CFL_NUMBER= 2.5 -%CFL_NUMBER= 0.2 % For AUSM -% -% Number of total iterations -EXT_ITER= 10000 -%EXT_ITER= 1 -% -% Runge-Kutta alpha coefficients -%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5, 1.0 ) -RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) - -% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% -% -% Convective numerical method (DG) -NUM_METHOD_FEM_FLOW= DG -% -% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) -RIEMANN_SOLVER_FEM= ROE -%RIEMANN_SOLVER_FEM= AUSM -% -% Constant factor applied for quadrature with straight elements (2.0 by default) -QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 -%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 -% -% Constant factor applied for quadrature with curved elements (3.0 by default) -QUADRATURE_FACTOR_CURVED_FEM = 3.0 -%QUADRATURE_FACTOR_CURVED_FEM = 2.0 -% -% Time discretization (RUNGE-KUTTA_EXPLICIT) -TIME_DISCRE_FEM_FLOW= RUNGE-KUTTA_EXPLICIT -% - -% --------------------------- CONVERGENCE PARAMETERS --------------------------% -% -% Convergence criteria (CAUCHY, RESIDUAL) -CONV_CRITERIA= RESIDUAL -% -% -% Min value of the residual (log10 of the residual) -CONV_RESIDUAL_MINVAL= -8 -% -% Start Cauchy criteria at iteration number -CONV_STARTITER= 10 -% -% Number of elements to apply the criteria -CONV_CAUCHY_ELEMS= 100 -% -% Epsilon to control the series convergence -CONV_CAUCHY_EPS= 1E-6 -% - -% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% -% Mesh input file -MESH_FILENAME= Quad50X50_HalfGeom_nPoly4.su2 -% -% Mesh input file format (SU2, CGNS, NETCDF_ASCII) -MESH_FORMAT= SU2 -% -% Mesh output file -MESH_OUT_FILENAME= mesh_out.su2 -% -% Restart flow input file -SOLUTION_FILENAME= solution_flow.dat -% -% Restart adjoint input file -SOLUTION_ADJ_FILENAME= solution_adj.dat -% -% Output tabular format (CSV, TECPLOT) -TABULAR_FORMAT= CSV -% -% Output file convergence history (w/o extension) -CONV_FILENAME= history -% -% Output file restart flow -RESTART_FILENAME= restart_flow.dat -% -% Output file restart adjoint -RESTART_ADJ_FILENAME= restart_adj.dat -% -% Output file flow (w/o extension) variables -VOLUME_FILENAME= flow -% -% Output file adjoint (w/o extension) variables -VOLUME_ADJ_FILENAME= adjoint -% -% Output Objective function gradient (using continuous adjoint) -GRAD_OBJFUNC_FILENAME= of_grad.dat -% -% Output file surface flow coefficient (w/o extension) -SURFACE_FILENAME= surface_flow -% -% Output file surface adjoint coefficient (w/o extension) -SURFACE_ADJ_FILENAME= surface_adjoint -% -% Writing solution file frequency -OUTPUT_WRT_FREQ= 5000 -% -% Writing convergence history frequency -WRT_CON_FREQ= 100 +% +% Ringleb test case: Make sure to compile the executable with the +% flag -DRINGLEB to set the appropriate initial and boundary conditions. +% +% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% +% +% Physical governing equations (EULER, NAVIER_STOKES, +% FEM_EULER, FEM_NAVIER_STOKES, +% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, +% POISSON_EQUATION) +SOLVER= FEM_EULER +% +% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) +MATH_PROBLEM= DIRECT +% +% Restart solution (NO, YES) +RESTART_SOL= NO +%RESTART_SOL= YES + +% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% +% +% Mach number (non-dimensional, based on the free-stream values) +MACH_NUMBER= 0.8 +% +% Angle of attack (degrees) +AoA= 0.0 +% +% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) +FREESTREAM_PRESSURE= 101325.0 +% +% Free-stream temperature (273.15 K by default) +FREESTREAM_TEMPERATURE= 273.15 + +% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% +% +% Ratio of specific heats (1.4 (air), only for compressible flows) +GAMMA_VALUE= 1.4 +% +% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) +GAS_CONSTANT= 287.87 + +% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% +% +% Reference origin for moment computation +REF_ORIGIN_MOMENT_X = 0.25 +REF_ORIGIN_MOMENT_Y = 0.00 +REF_ORIGIN_MOMENT_Z = 0.00 +% +% Reference length for pitching, rolling, and yawing non-dimensional moment +REF_LENGTH_MOMENT= 1.0 +% +% Reference area for force coefficients (0 implies automatic calculation) +REF_AREA= 1.0 +% +% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, +% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) +REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE + +% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% +% +% Marker of the Euler boundary (NONE = no marker) +MARKER_EULER= ( LeftBoundary, RightBoundary ) +% +% Custom boundaries +MARKER_CUSTOM= ( BottomBoundary, TopBoundary ) +%MARKER_CUSTOM= ( BottomBoundary, LeftBoundary, RightBoundary, TopBoundary ) + +% ------------------------ SURFACES IDENTIFICATION ----------------------------% +% +% Marker(s) of the surface in the surface flow solution file +MARKER_PLOTTING = ( LeftBoundary, RightBoundary ) +% +% Marker(s) of the surface where the non-dimensional coefficients are evaluated. +MARKER_MONITORING = ( LeftBoundary, RightBoundary ) +% +% Marker(s) of the surface where obj. func. (design problem) will be evaluated +MARKER_DESIGNING = ( LeftBoundary, RightBoundary ) + +% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% +% +% Courant-Friedrichs-Lewy condition of the finest grid +CFL_NUMBER= 2.5 +%CFL_NUMBER= 0.2 % For AUSM +% +% Number of total iterations +EXT_ITER= 10000 +%EXT_ITER= 1 +% +% Runge-Kutta alpha coefficients +%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5, 1.0 ) +RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) + +% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% +% +% Convective numerical method (DG) +NUM_METHOD_FEM_FLOW= DG +% +% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) +RIEMANN_SOLVER_FEM= ROE +%RIEMANN_SOLVER_FEM= AUSM +% +% Constant factor applied for quadrature with straight elements (2.0 by default) +QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 +%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 +% +% Constant factor applied for quadrature with curved elements (3.0 by default) +QUADRATURE_FACTOR_CURVED_FEM = 3.0 +%QUADRATURE_FACTOR_CURVED_FEM = 2.0 +% +% Time discretization (RUNGE-KUTTA_EXPLICIT) +TIME_DISCRE_FEM_FLOW= RUNGE-KUTTA_EXPLICIT +% + +% --------------------------- CONVERGENCE PARAMETERS --------------------------% +% +% Convergence criteria (CAUCHY, RESIDUAL) +CONV_CRITERIA= RESIDUAL +% +% +% Min value of the residual (log10 of the residual) +CONV_RESIDUAL_MINVAL= -8 +% +% Start Cauchy criteria at iteration number +CONV_STARTITER= 10 +% +% Number of elements to apply the criteria +CONV_CAUCHY_ELEMS= 100 +% +% Epsilon to control the series convergence +CONV_CAUCHY_EPS= 1E-6 +% + +% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% +% Mesh input file +MESH_FILENAME= Quad50X50_HalfGeom_nPoly4.su2 +% +% Mesh input file format (SU2, CGNS, NETCDF_ASCII) +MESH_FORMAT= SU2 +% +% Mesh output file +MESH_OUT_FILENAME= mesh_out.su2 +% +% Restart flow input file +SOLUTION_FILENAME= solution_flow.dat +% +% Restart adjoint input file +SOLUTION_ADJ_FILENAME= solution_adj.dat +% +% Output tabular format (CSV, TECPLOT) +TABULAR_FORMAT= CSV +% +% Output file convergence history (w/o extension) +CONV_FILENAME= history +% +% Output file restart flow +RESTART_FILENAME= restart_flow.dat +% +% Output file restart adjoint +RESTART_ADJ_FILENAME= restart_adj.dat +% +% Output file flow (w/o extension) variables +VOLUME_FILENAME= flow +% +% Output file adjoint (w/o extension) variables +VOLUME_ADJ_FILENAME= adjoint +% +% Output Objective function gradient (using continuous adjoint) +GRAD_OBJFUNC_FILENAME= of_grad.dat +% +% Output file surface flow coefficient (w/o extension) +SURFACE_FILENAME= surface_flow +% +% Output file surface adjoint coefficient (w/o extension) +SURFACE_ADJ_FILENAME= surface_adjoint +% +% Writing solution file frequency +OUTPUT_WRT_FREQ= 5000 +% +SCREEN_WRT_FREQ_INNER= 100 diff --git a/TestCases/hom_euler/Ringleb/QuadDominantUnstr100X100_HalfGeom_nPoly4/Ringleb.cfg b/TestCases/hom_euler/Ringleb/QuadDominantUnstr100X100_HalfGeom_nPoly4/Ringleb.cfg index 7a1d1d542a3..fb34684fd89 100644 --- a/TestCases/hom_euler/Ringleb/QuadDominantUnstr100X100_HalfGeom_nPoly4/Ringleb.cfg +++ b/TestCases/hom_euler/Ringleb/QuadDominantUnstr100X100_HalfGeom_nPoly4/Ringleb.cfg @@ -1,180 +1,179 @@ -% -% Ringleb test case: Make sure to compile the executable with the -% flag -DRINGLEB to set the appropriate initial and boundary conditions. -% -% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% -% -% Physical governing equations (EULER, NAVIER_STOKES, -% FEM_EULER, FEM_NAVIER_STOKES, -% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, -% POISSON_EQUATION) -SOLVER= FEM_EULER -% -% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) -MATH_PROBLEM= DIRECT -% -% Restart solution (NO, YES) -RESTART_SOL= NO -%RESTART_SOL= YES - -% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% -% -% Mach number (non-dimensional, based on the free-stream values) -MACH_NUMBER= 0.8 -% -% Angle of attack (degrees) -AoA= 0.0 -% -% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) -FREESTREAM_PRESSURE= 101325.0 -% -% Free-stream temperature (273.15 K by default) -FREESTREAM_TEMPERATURE= 273.15 - -% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% -% -% Ratio of specific heats (1.4 (air), only for compressible flows) -GAMMA_VALUE= 1.4 -% -% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) -GAS_CONSTANT= 287.87 - -% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% -% -% Reference origin for moment computation -REF_ORIGIN_MOMENT_X = 0.25 -REF_ORIGIN_MOMENT_Y = 0.00 -REF_ORIGIN_MOMENT_Z = 0.00 -% -% Reference length for pitching, rolling, and yawing non-dimensional moment -REF_LENGTH_MOMENT= 1.0 -% -% Reference area for force coefficients (0 implies automatic calculation) -REF_AREA= 1.0 -% -% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, -% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) -REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE - -% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% -% -% Marker of the Euler boundary (NONE = no marker) -%MARKER_EULER= ( LeftBoundary, RightBoundary ) -% -% Custom boundaries -%MARKER_CUSTOM= ( BottomBoundary, TopBoundary ) -MARKER_CUSTOM= ( BottomBoundary, LeftBoundary, RightBoundary, TopBoundary ) - -% ------------------------ SURFACES IDENTIFICATION ----------------------------% -% -% Marker(s) of the surface in the surface flow solution file -MARKER_PLOTTING = ( LeftBoundary, RightBoundary ) -% -% Marker(s) of the surface where the non-dimensional coefficients are evaluated. -MARKER_MONITORING = ( LeftBoundary, RightBoundary ) -% -% Marker(s) of the surface where obj. func. (design problem) will be evaluated -MARKER_DESIGNING = ( LeftBoundary, RightBoundary ) - -% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% -% -% Courant-Friedrichs-Lewy condition of the finest grid -CFL_NUMBER= 2.5 -%CFL_NUMBER= 0.2 % For AUSM -% -% Number of total iterations -EXT_ITER= 10000 -%EXT_ITER= 1 -% -% Runge-Kutta alpha coefficients -%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5, 1.0 ) -RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) - -% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% -% -% Convective numerical method (DG) -NUM_METHOD_FEM_FLOW= DG -% -% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) -RIEMANN_SOLVER_FEM= ROE -%RIEMANN_SOLVER_FEM= AUSM -% -% Constant factor applied for quadrature with straight elements (2.0 by default) -QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 -%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 -% -% Constant factor applied for quadrature with curved elements (3.0 by default) -QUADRATURE_FACTOR_CURVED_FEM = 3.0 -%QUADRATURE_FACTOR_CURVED_FEM = 2.0 -% -% Time discretization (RUNGE-KUTTA_EXPLICIT) -TIME_DISCRE_FEM_FLOW= RUNGE-KUTTA_EXPLICIT -% - -% --------------------------- CONVERGENCE PARAMETERS --------------------------% -% -% Convergence criteria (CAUCHY, RESIDUAL) -CONV_CRITERIA= RESIDUAL -% -% -% Min value of the residual (log10 of the residual) -CONV_RESIDUAL_MINVAL= -8 -% -% Start Cauchy criteria at iteration number -CONV_STARTITER= 10 -% -% Number of elements to apply the criteria -CONV_CAUCHY_ELEMS= 100 -% -% Epsilon to control the series convergence -CONV_CAUCHY_EPS= 1E-6 -% - -% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% -% Mesh input file -MESH_FILENAME= QuadDominantUnstr100X100_HalfGeom_nPoly4.su2 -% -% Mesh input file format (SU2, CGNS, NETCDF_ASCII) -MESH_FORMAT= SU2 -% -% Mesh output file -MESH_OUT_FILENAME= mesh_out.su2 -% -% Restart flow input file -SOLUTION_FILENAME= solution_flow.dat -% -% Restart adjoint input file -SOLUTION_ADJ_FILENAME= solution_adj.dat -% -% Output tabular format (CSV, TECPLOT) -TABULAR_FORMAT= CSV -% -% Output file convergence history (w/o extension) -CONV_FILENAME= history -% -% Output file restart flow -RESTART_FILENAME= restart_flow.dat -% -% Output file restart adjoint -RESTART_ADJ_FILENAME= restart_adj.dat -% -% Output file flow (w/o extension) variables -VOLUME_FILENAME= flow -% -% Output file adjoint (w/o extension) variables -VOLUME_ADJ_FILENAME= adjoint -% -% Output Objective function gradient (using continuous adjoint) -GRAD_OBJFUNC_FILENAME= of_grad.dat -% -% Output file surface flow coefficient (w/o extension) -SURFACE_FILENAME= surface_flow -% -% Output file surface adjoint coefficient (w/o extension) -SURFACE_ADJ_FILENAME= surface_adjoint -% -% Writing solution file frequency -OUTPUT_WRT_FREQ= 5000 -% -% Writing convergence history frequency -WRT_CON_FREQ= 100 +% +% Ringleb test case: Make sure to compile the executable with the +% flag -DRINGLEB to set the appropriate initial and boundary conditions. +% +% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% +% +% Physical governing equations (EULER, NAVIER_STOKES, +% FEM_EULER, FEM_NAVIER_STOKES, +% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, +% POISSON_EQUATION) +SOLVER= FEM_EULER +% +% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) +MATH_PROBLEM= DIRECT +% +% Restart solution (NO, YES) +RESTART_SOL= NO +%RESTART_SOL= YES + +% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% +% +% Mach number (non-dimensional, based on the free-stream values) +MACH_NUMBER= 0.8 +% +% Angle of attack (degrees) +AoA= 0.0 +% +% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) +FREESTREAM_PRESSURE= 101325.0 +% +% Free-stream temperature (273.15 K by default) +FREESTREAM_TEMPERATURE= 273.15 + +% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% +% +% Ratio of specific heats (1.4 (air), only for compressible flows) +GAMMA_VALUE= 1.4 +% +% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) +GAS_CONSTANT= 287.87 + +% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% +% +% Reference origin for moment computation +REF_ORIGIN_MOMENT_X = 0.25 +REF_ORIGIN_MOMENT_Y = 0.00 +REF_ORIGIN_MOMENT_Z = 0.00 +% +% Reference length for pitching, rolling, and yawing non-dimensional moment +REF_LENGTH_MOMENT= 1.0 +% +% Reference area for force coefficients (0 implies automatic calculation) +REF_AREA= 1.0 +% +% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, +% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) +REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE + +% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% +% +% Marker of the Euler boundary (NONE = no marker) +%MARKER_EULER= ( LeftBoundary, RightBoundary ) +% +% Custom boundaries +%MARKER_CUSTOM= ( BottomBoundary, TopBoundary ) +MARKER_CUSTOM= ( BottomBoundary, LeftBoundary, RightBoundary, TopBoundary ) + +% ------------------------ SURFACES IDENTIFICATION ----------------------------% +% +% Marker(s) of the surface in the surface flow solution file +MARKER_PLOTTING = ( LeftBoundary, RightBoundary ) +% +% Marker(s) of the surface where the non-dimensional coefficients are evaluated. +MARKER_MONITORING = ( LeftBoundary, RightBoundary ) +% +% Marker(s) of the surface where obj. func. (design problem) will be evaluated +MARKER_DESIGNING = ( LeftBoundary, RightBoundary ) + +% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% +% +% Courant-Friedrichs-Lewy condition of the finest grid +CFL_NUMBER= 2.5 +%CFL_NUMBER= 0.2 % For AUSM +% +% Number of total iterations +EXT_ITER= 10000 +%EXT_ITER= 1 +% +% Runge-Kutta alpha coefficients +%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5, 1.0 ) +RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) + +% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% +% +% Convective numerical method (DG) +NUM_METHOD_FEM_FLOW= DG +% +% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) +RIEMANN_SOLVER_FEM= ROE +%RIEMANN_SOLVER_FEM= AUSM +% +% Constant factor applied for quadrature with straight elements (2.0 by default) +QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 +%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 +% +% Constant factor applied for quadrature with curved elements (3.0 by default) +QUADRATURE_FACTOR_CURVED_FEM = 3.0 +%QUADRATURE_FACTOR_CURVED_FEM = 2.0 +% +% Time discretization (RUNGE-KUTTA_EXPLICIT) +TIME_DISCRE_FEM_FLOW= RUNGE-KUTTA_EXPLICIT +% + +% --------------------------- CONVERGENCE PARAMETERS --------------------------% +% +% Convergence criteria (CAUCHY, RESIDUAL) +CONV_CRITERIA= RESIDUAL +% +% +% Min value of the residual (log10 of the residual) +CONV_RESIDUAL_MINVAL= -8 +% +% Start Cauchy criteria at iteration number +CONV_STARTITER= 10 +% +% Number of elements to apply the criteria +CONV_CAUCHY_ELEMS= 100 +% +% Epsilon to control the series convergence +CONV_CAUCHY_EPS= 1E-6 +% + +% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% +% Mesh input file +MESH_FILENAME= QuadDominantUnstr100X100_HalfGeom_nPoly4.su2 +% +% Mesh input file format (SU2, CGNS, NETCDF_ASCII) +MESH_FORMAT= SU2 +% +% Mesh output file +MESH_OUT_FILENAME= mesh_out.su2 +% +% Restart flow input file +SOLUTION_FILENAME= solution_flow.dat +% +% Restart adjoint input file +SOLUTION_ADJ_FILENAME= solution_adj.dat +% +% Output tabular format (CSV, TECPLOT) +TABULAR_FORMAT= CSV +% +% Output file convergence history (w/o extension) +CONV_FILENAME= history +% +% Output file restart flow +RESTART_FILENAME= restart_flow.dat +% +% Output file restart adjoint +RESTART_ADJ_FILENAME= restart_adj.dat +% +% Output file flow (w/o extension) variables +VOLUME_FILENAME= flow +% +% Output file adjoint (w/o extension) variables +VOLUME_ADJ_FILENAME= adjoint +% +% Output Objective function gradient (using continuous adjoint) +GRAD_OBJFUNC_FILENAME= of_grad.dat +% +% Output file surface flow coefficient (w/o extension) +SURFACE_FILENAME= surface_flow +% +% Output file surface adjoint coefficient (w/o extension) +SURFACE_ADJ_FILENAME= surface_adjoint +% +% Writing solution file frequency +OUTPUT_WRT_FREQ= 5000 +% +SCREEN_WRT_FREQ_INNER= 100 diff --git a/TestCases/hom_euler/Ringleb/QuadDominantUnstr100X100_HalfGeom_nPoly4/Ringleb_WallBC.cfg b/TestCases/hom_euler/Ringleb/QuadDominantUnstr100X100_HalfGeom_nPoly4/Ringleb_WallBC.cfg index 7b5a65a9b08..39ce2be9909 100644 --- a/TestCases/hom_euler/Ringleb/QuadDominantUnstr100X100_HalfGeom_nPoly4/Ringleb_WallBC.cfg +++ b/TestCases/hom_euler/Ringleb/QuadDominantUnstr100X100_HalfGeom_nPoly4/Ringleb_WallBC.cfg @@ -1,180 +1,179 @@ -% -% Ringleb test case: Make sure to compile the executable with the -% flag -DRINGLEB to set the appropriate initial and boundary conditions. -% -% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% -% -% Physical governing equations (EULER, NAVIER_STOKES, -% FEM_EULER, FEM_NAVIER_STOKES, -% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, -% POISSON_EQUATION) -SOLVER= FEM_EULER -% -% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) -MATH_PROBLEM= DIRECT -% -% Restart solution (NO, YES) -RESTART_SOL= NO -%RESTART_SOL= YES - -% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% -% -% Mach number (non-dimensional, based on the free-stream values) -MACH_NUMBER= 0.8 -% -% Angle of attack (degrees) -AoA= 0.0 -% -% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) -FREESTREAM_PRESSURE= 101325.0 -% -% Free-stream temperature (273.15 K by default) -FREESTREAM_TEMPERATURE= 273.15 - -% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% -% -% Ratio of specific heats (1.4 (air), only for compressible flows) -GAMMA_VALUE= 1.4 -% -% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) -GAS_CONSTANT= 287.87 - -% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% -% -% Reference origin for moment computation -REF_ORIGIN_MOMENT_X = 0.25 -REF_ORIGIN_MOMENT_Y = 0.00 -REF_ORIGIN_MOMENT_Z = 0.00 -% -% Reference length for pitching, rolling, and yawing non-dimensional moment -REF_LENGTH_MOMENT= 1.0 -% -% Reference area for force coefficients (0 implies automatic calculation) -REF_AREA= 1.0 -% -% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, -% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) -REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE - -% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% -% -% Marker of the Euler boundary (NONE = no marker) -MARKER_EULER= ( LeftBoundary, RightBoundary ) -% -% Custom boundaries -MARKER_CUSTOM= ( BottomBoundary, TopBoundary ) -%MARKER_CUSTOM= ( BottomBoundary, LeftBoundary, RightBoundary, TopBoundary ) - -% ------------------------ SURFACES IDENTIFICATION ----------------------------% -% -% Marker(s) of the surface in the surface flow solution file -MARKER_PLOTTING = ( LeftBoundary, RightBoundary ) -% -% Marker(s) of the surface where the non-dimensional coefficients are evaluated. -MARKER_MONITORING = ( LeftBoundary, RightBoundary ) -% -% Marker(s) of the surface where obj. func. (design problem) will be evaluated -MARKER_DESIGNING = ( LeftBoundary, RightBoundary ) - -% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% -% -% Courant-Friedrichs-Lewy condition of the finest grid -CFL_NUMBER= 2.5 -%CFL_NUMBER= 0.2 % For AUSM -% -% Number of total iterations -EXT_ITER= 10000 -%EXT_ITER= 1 -% -% Runge-Kutta alpha coefficients -%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5, 1.0 ) -RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) - -% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% -% -% Convective numerical method (DG) -NUM_METHOD_FEM_FLOW= DG -% -% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) -RIEMANN_SOLVER_FEM= ROE -%RIEMANN_SOLVER_FEM= AUSM -% -% Constant factor applied for quadrature with straight elements (2.0 by default) -QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 -%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 -% -% Constant factor applied for quadrature with curved elements (3.0 by default) -QUADRATURE_FACTOR_CURVED_FEM = 3.0 -%QUADRATURE_FACTOR_CURVED_FEM = 2.0 -% -% Time discretization (RUNGE-KUTTA_EXPLICIT) -TIME_DISCRE_FEM_FLOW= RUNGE-KUTTA_EXPLICIT -% - -% --------------------------- CONVERGENCE PARAMETERS --------------------------% -% -% Convergence criteria (CAUCHY, RESIDUAL) -CONV_CRITERIA= RESIDUAL -% -% -% Min value of the residual (log10 of the residual) -CONV_RESIDUAL_MINVAL= -8 -% -% Start Cauchy criteria at iteration number -CONV_STARTITER= 10 -% -% Number of elements to apply the criteria -CONV_CAUCHY_ELEMS= 100 -% -% Epsilon to control the series convergence -CONV_CAUCHY_EPS= 1E-6 -% - -% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% -% Mesh input file -MESH_FILENAME= QuadDominantUnstr100X100_HalfGeom_nPoly4.su2 -% -% Mesh input file format (SU2, CGNS, NETCDF_ASCII) -MESH_FORMAT= SU2 -% -% Mesh output file -MESH_OUT_FILENAME= mesh_out.su2 -% -% Restart flow input file -SOLUTION_FILENAME= solution_flow.dat -% -% Restart adjoint input file -SOLUTION_ADJ_FILENAME= solution_adj.dat -% -% Output tabular format (CSV, TECPLOT) -TABULAR_FORMAT= CSV -% -% Output file convergence history (w/o extension) -CONV_FILENAME= history -% -% Output file restart flow -RESTART_FILENAME= restart_flow.dat -% -% Output file restart adjoint -RESTART_ADJ_FILENAME= restart_adj.dat -% -% Output file flow (w/o extension) variables -VOLUME_FILENAME= flow -% -% Output file adjoint (w/o extension) variables -VOLUME_ADJ_FILENAME= adjoint -% -% Output Objective function gradient (using continuous adjoint) -GRAD_OBJFUNC_FILENAME= of_grad.dat -% -% Output file surface flow coefficient (w/o extension) -SURFACE_FILENAME= surface_flow -% -% Output file surface adjoint coefficient (w/o extension) -SURFACE_ADJ_FILENAME= surface_adjoint -% -% Writing solution file frequency -OUTPUT_WRT_FREQ= 5000 -% -% Writing convergence history frequency -WRT_CON_FREQ= 100 +% +% Ringleb test case: Make sure to compile the executable with the +% flag -DRINGLEB to set the appropriate initial and boundary conditions. +% +% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% +% +% Physical governing equations (EULER, NAVIER_STOKES, +% FEM_EULER, FEM_NAVIER_STOKES, +% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, +% POISSON_EQUATION) +SOLVER= FEM_EULER +% +% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) +MATH_PROBLEM= DIRECT +% +% Restart solution (NO, YES) +RESTART_SOL= NO +%RESTART_SOL= YES + +% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% +% +% Mach number (non-dimensional, based on the free-stream values) +MACH_NUMBER= 0.8 +% +% Angle of attack (degrees) +AoA= 0.0 +% +% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) +FREESTREAM_PRESSURE= 101325.0 +% +% Free-stream temperature (273.15 K by default) +FREESTREAM_TEMPERATURE= 273.15 + +% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% +% +% Ratio of specific heats (1.4 (air), only for compressible flows) +GAMMA_VALUE= 1.4 +% +% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) +GAS_CONSTANT= 287.87 + +% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% +% +% Reference origin for moment computation +REF_ORIGIN_MOMENT_X = 0.25 +REF_ORIGIN_MOMENT_Y = 0.00 +REF_ORIGIN_MOMENT_Z = 0.00 +% +% Reference length for pitching, rolling, and yawing non-dimensional moment +REF_LENGTH_MOMENT= 1.0 +% +% Reference area for force coefficients (0 implies automatic calculation) +REF_AREA= 1.0 +% +% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, +% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) +REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE + +% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% +% +% Marker of the Euler boundary (NONE = no marker) +MARKER_EULER= ( LeftBoundary, RightBoundary ) +% +% Custom boundaries +MARKER_CUSTOM= ( BottomBoundary, TopBoundary ) +%MARKER_CUSTOM= ( BottomBoundary, LeftBoundary, RightBoundary, TopBoundary ) + +% ------------------------ SURFACES IDENTIFICATION ----------------------------% +% +% Marker(s) of the surface in the surface flow solution file +MARKER_PLOTTING = ( LeftBoundary, RightBoundary ) +% +% Marker(s) of the surface where the non-dimensional coefficients are evaluated. +MARKER_MONITORING = ( LeftBoundary, RightBoundary ) +% +% Marker(s) of the surface where obj. func. (design problem) will be evaluated +MARKER_DESIGNING = ( LeftBoundary, RightBoundary ) + +% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% +% +% Courant-Friedrichs-Lewy condition of the finest grid +CFL_NUMBER= 2.5 +%CFL_NUMBER= 0.2 % For AUSM +% +% Number of total iterations +EXT_ITER= 10000 +%EXT_ITER= 1 +% +% Runge-Kutta alpha coefficients +%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5, 1.0 ) +RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) + +% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% +% +% Convective numerical method (DG) +NUM_METHOD_FEM_FLOW= DG +% +% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) +RIEMANN_SOLVER_FEM= ROE +%RIEMANN_SOLVER_FEM= AUSM +% +% Constant factor applied for quadrature with straight elements (2.0 by default) +QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 +%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 +% +% Constant factor applied for quadrature with curved elements (3.0 by default) +QUADRATURE_FACTOR_CURVED_FEM = 3.0 +%QUADRATURE_FACTOR_CURVED_FEM = 2.0 +% +% Time discretization (RUNGE-KUTTA_EXPLICIT) +TIME_DISCRE_FEM_FLOW= RUNGE-KUTTA_EXPLICIT +% + +% --------------------------- CONVERGENCE PARAMETERS --------------------------% +% +% Convergence criteria (CAUCHY, RESIDUAL) +CONV_CRITERIA= RESIDUAL +% +% +% Min value of the residual (log10 of the residual) +CONV_RESIDUAL_MINVAL= -8 +% +% Start Cauchy criteria at iteration number +CONV_STARTITER= 10 +% +% Number of elements to apply the criteria +CONV_CAUCHY_ELEMS= 100 +% +% Epsilon to control the series convergence +CONV_CAUCHY_EPS= 1E-6 +% + +% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% +% Mesh input file +MESH_FILENAME= QuadDominantUnstr100X100_HalfGeom_nPoly4.su2 +% +% Mesh input file format (SU2, CGNS, NETCDF_ASCII) +MESH_FORMAT= SU2 +% +% Mesh output file +MESH_OUT_FILENAME= mesh_out.su2 +% +% Restart flow input file +SOLUTION_FILENAME= solution_flow.dat +% +% Restart adjoint input file +SOLUTION_ADJ_FILENAME= solution_adj.dat +% +% Output tabular format (CSV, TECPLOT) +TABULAR_FORMAT= CSV +% +% Output file convergence history (w/o extension) +CONV_FILENAME= history +% +% Output file restart flow +RESTART_FILENAME= restart_flow.dat +% +% Output file restart adjoint +RESTART_ADJ_FILENAME= restart_adj.dat +% +% Output file flow (w/o extension) variables +VOLUME_FILENAME= flow +% +% Output file adjoint (w/o extension) variables +VOLUME_ADJ_FILENAME= adjoint +% +% Output Objective function gradient (using continuous adjoint) +GRAD_OBJFUNC_FILENAME= of_grad.dat +% +% Output file surface flow coefficient (w/o extension) +SURFACE_FILENAME= surface_flow +% +% Output file surface adjoint coefficient (w/o extension) +SURFACE_ADJ_FILENAME= surface_adjoint +% +% Writing solution file frequency +OUTPUT_WRT_FREQ= 5000 +% +SCREEN_WRT_FREQ_INNER= 100 diff --git a/TestCases/hom_euler/Ringleb/Triangle50X50_HalfGeom_nPoly4/Ringleb.cfg b/TestCases/hom_euler/Ringleb/Triangle50X50_HalfGeom_nPoly4/Ringleb.cfg index 5a3e0eca525..83c047d3ead 100644 --- a/TestCases/hom_euler/Ringleb/Triangle50X50_HalfGeom_nPoly4/Ringleb.cfg +++ b/TestCases/hom_euler/Ringleb/Triangle50X50_HalfGeom_nPoly4/Ringleb.cfg @@ -1,180 +1,179 @@ -% -% Ringleb test case: Make sure to compile the executable with the -% flag -DRINGLEB to set the appropriate initial and boundary conditions. -% -% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% -% -% Physical governing equations (EULER, NAVIER_STOKES, -% FEM_EULER, FEM_NAVIER_STOKES, -% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, -% POISSON_EQUATION) -SOLVER= FEM_EULER -% -% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) -MATH_PROBLEM= DIRECT -% -% Restart solution (NO, YES) -RESTART_SOL= NO -%RESTART_SOL= YES - -% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% -% -% Mach number (non-dimensional, based on the free-stream values) -MACH_NUMBER= 0.8 -% -% Angle of attack (degrees) -AoA= 0.0 -% -% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) -FREESTREAM_PRESSURE= 101325.0 -% -% Free-stream temperature (273.15 K by default) -FREESTREAM_TEMPERATURE= 273.15 - -% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% -% -% Ratio of specific heats (1.4 (air), only for compressible flows) -GAMMA_VALUE= 1.4 -% -% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) -GAS_CONSTANT= 287.87 - -% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% -% -% Reference origin for moment computation -REF_ORIGIN_MOMENT_X = 0.25 -REF_ORIGIN_MOMENT_Y = 0.00 -REF_ORIGIN_MOMENT_Z = 0.00 -% -% Reference length for pitching, rolling, and yawing non-dimensional moment -REF_LENGTH_MOMENT= 1.0 -% -% Reference area for force coefficients (0 implies automatic calculation) -REF_AREA= 1.0 -% -% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, -% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) -REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE - -% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% -% -% Marker of the Euler boundary (NONE = no marker) -%MARKER_EULER= ( LeftBoundary, RightBoundary ) -% -% Custom boundaries -%MARKER_CUSTOM= ( BottomBoundary, TopBoundary ) -MARKER_CUSTOM= ( BottomBoundary, LeftBoundary, RightBoundary, TopBoundary ) - -% ------------------------ SURFACES IDENTIFICATION ----------------------------% -% -% Marker(s) of the surface in the surface flow solution file -MARKER_PLOTTING = ( LeftBoundary, RightBoundary ) -% -% Marker(s) of the surface where the non-dimensional coefficients are evaluated. -MARKER_MONITORING = ( LeftBoundary, RightBoundary ) -% -% Marker(s) of the surface where obj. func. (design problem) will be evaluated -MARKER_DESIGNING = ( LeftBoundary, RightBoundary ) - -% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% -% -% Courant-Friedrichs-Lewy condition of the finest grid -CFL_NUMBER= 2.5 -%CFL_NUMBER= 0.2 % For AUSM -% -% Number of total iterations -EXT_ITER= 10000 -%EXT_ITER= 1 -% -% Runge-Kutta alpha coefficients -%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5, 1.0 ) -RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) - -% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% -% -% Convective numerical method (DG) -NUM_METHOD_FEM_FLOW= DG -% -% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) -RIEMANN_SOLVER_FEM= ROE -%RIEMANN_SOLVER_FEM= AUSM -% -% Constant factor applied for quadrature with straight elements (2.0 by default) -QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 -%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 -% -% Constant factor applied for quadrature with curved elements (3.0 by default) -QUADRATURE_FACTOR_CURVED_FEM = 3.0 -%QUADRATURE_FACTOR_CURVED_FEM = 2.0 -% -% Time discretization (RUNGE-KUTTA_EXPLICIT) -TIME_DISCRE_FEM_FLOW= RUNGE-KUTTA_EXPLICIT -% - -% --------------------------- CONVERGENCE PARAMETERS --------------------------% -% -% Convergence criteria (CAUCHY, RESIDUAL) -CONV_CRITERIA= RESIDUAL -% -% -% Min value of the residual (log10 of the residual) -CONV_RESIDUAL_MINVAL= -8 -% -% Start Cauchy criteria at iteration number -CONV_STARTITER= 10 -% -% Number of elements to apply the criteria -CONV_CAUCHY_ELEMS= 100 -% -% Epsilon to control the series convergence -CONV_CAUCHY_EPS= 1E-6 -% - -% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% -% Mesh input file -MESH_FILENAME= TriangleUnstr50X50_HalfGeom_nPoly4.su2 -% -% Mesh input file format (SU2, CGNS, NETCDF_ASCII) -MESH_FORMAT= SU2 -% -% Mesh output file -MESH_OUT_FILENAME= mesh_out.su2 -% -% Restart flow input file -SOLUTION_FILENAME= solution_flow.dat -% -% Restart adjoint input file -SOLUTION_ADJ_FILENAME= solution_adj.dat -% -% Output tabular format (CSV, TECPLOT) -TABULAR_FORMAT= CSV -% -% Output file convergence history (w/o extension) -CONV_FILENAME= history -% -% Output file restart flow -RESTART_FILENAME= restart_flow.dat -% -% Output file restart adjoint -RESTART_ADJ_FILENAME= restart_adj.dat -% -% Output file flow (w/o extension) variables -VOLUME_FILENAME= flow -% -% Output file adjoint (w/o extension) variables -VOLUME_ADJ_FILENAME= adjoint -% -% Output Objective function gradient (using continuous adjoint) -GRAD_OBJFUNC_FILENAME= of_grad.dat -% -% Output file surface flow coefficient (w/o extension) -SURFACE_FILENAME= surface_flow -% -% Output file surface adjoint coefficient (w/o extension) -SURFACE_ADJ_FILENAME= surface_adjoint -% -% Writing solution file frequency -OUTPUT_WRT_FREQ= 5000 -% -% Writing convergence history frequency -WRT_CON_FREQ= 100 +% +% Ringleb test case: Make sure to compile the executable with the +% flag -DRINGLEB to set the appropriate initial and boundary conditions. +% +% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% +% +% Physical governing equations (EULER, NAVIER_STOKES, +% FEM_EULER, FEM_NAVIER_STOKES, +% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, +% POISSON_EQUATION) +SOLVER= FEM_EULER +% +% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) +MATH_PROBLEM= DIRECT +% +% Restart solution (NO, YES) +RESTART_SOL= NO +%RESTART_SOL= YES + +% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% +% +% Mach number (non-dimensional, based on the free-stream values) +MACH_NUMBER= 0.8 +% +% Angle of attack (degrees) +AoA= 0.0 +% +% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) +FREESTREAM_PRESSURE= 101325.0 +% +% Free-stream temperature (273.15 K by default) +FREESTREAM_TEMPERATURE= 273.15 + +% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% +% +% Ratio of specific heats (1.4 (air), only for compressible flows) +GAMMA_VALUE= 1.4 +% +% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) +GAS_CONSTANT= 287.87 + +% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% +% +% Reference origin for moment computation +REF_ORIGIN_MOMENT_X = 0.25 +REF_ORIGIN_MOMENT_Y = 0.00 +REF_ORIGIN_MOMENT_Z = 0.00 +% +% Reference length for pitching, rolling, and yawing non-dimensional moment +REF_LENGTH_MOMENT= 1.0 +% +% Reference area for force coefficients (0 implies automatic calculation) +REF_AREA= 1.0 +% +% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, +% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) +REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE + +% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% +% +% Marker of the Euler boundary (NONE = no marker) +%MARKER_EULER= ( LeftBoundary, RightBoundary ) +% +% Custom boundaries +%MARKER_CUSTOM= ( BottomBoundary, TopBoundary ) +MARKER_CUSTOM= ( BottomBoundary, LeftBoundary, RightBoundary, TopBoundary ) + +% ------------------------ SURFACES IDENTIFICATION ----------------------------% +% +% Marker(s) of the surface in the surface flow solution file +MARKER_PLOTTING = ( LeftBoundary, RightBoundary ) +% +% Marker(s) of the surface where the non-dimensional coefficients are evaluated. +MARKER_MONITORING = ( LeftBoundary, RightBoundary ) +% +% Marker(s) of the surface where obj. func. (design problem) will be evaluated +MARKER_DESIGNING = ( LeftBoundary, RightBoundary ) + +% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% +% +% Courant-Friedrichs-Lewy condition of the finest grid +CFL_NUMBER= 2.5 +%CFL_NUMBER= 0.2 % For AUSM +% +% Number of total iterations +EXT_ITER= 10000 +%EXT_ITER= 1 +% +% Runge-Kutta alpha coefficients +%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5, 1.0 ) +RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) + +% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% +% +% Convective numerical method (DG) +NUM_METHOD_FEM_FLOW= DG +% +% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) +RIEMANN_SOLVER_FEM= ROE +%RIEMANN_SOLVER_FEM= AUSM +% +% Constant factor applied for quadrature with straight elements (2.0 by default) +QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 +%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 +% +% Constant factor applied for quadrature with curved elements (3.0 by default) +QUADRATURE_FACTOR_CURVED_FEM = 3.0 +%QUADRATURE_FACTOR_CURVED_FEM = 2.0 +% +% Time discretization (RUNGE-KUTTA_EXPLICIT) +TIME_DISCRE_FEM_FLOW= RUNGE-KUTTA_EXPLICIT +% + +% --------------------------- CONVERGENCE PARAMETERS --------------------------% +% +% Convergence criteria (CAUCHY, RESIDUAL) +CONV_CRITERIA= RESIDUAL +% +% +% Min value of the residual (log10 of the residual) +CONV_RESIDUAL_MINVAL= -8 +% +% Start Cauchy criteria at iteration number +CONV_STARTITER= 10 +% +% Number of elements to apply the criteria +CONV_CAUCHY_ELEMS= 100 +% +% Epsilon to control the series convergence +CONV_CAUCHY_EPS= 1E-6 +% + +% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% +% Mesh input file +MESH_FILENAME= TriangleUnstr50X50_HalfGeom_nPoly4.su2 +% +% Mesh input file format (SU2, CGNS, NETCDF_ASCII) +MESH_FORMAT= SU2 +% +% Mesh output file +MESH_OUT_FILENAME= mesh_out.su2 +% +% Restart flow input file +SOLUTION_FILENAME= solution_flow.dat +% +% Restart adjoint input file +SOLUTION_ADJ_FILENAME= solution_adj.dat +% +% Output tabular format (CSV, TECPLOT) +TABULAR_FORMAT= CSV +% +% Output file convergence history (w/o extension) +CONV_FILENAME= history +% +% Output file restart flow +RESTART_FILENAME= restart_flow.dat +% +% Output file restart adjoint +RESTART_ADJ_FILENAME= restart_adj.dat +% +% Output file flow (w/o extension) variables +VOLUME_FILENAME= flow +% +% Output file adjoint (w/o extension) variables +VOLUME_ADJ_FILENAME= adjoint +% +% Output Objective function gradient (using continuous adjoint) +GRAD_OBJFUNC_FILENAME= of_grad.dat +% +% Output file surface flow coefficient (w/o extension) +SURFACE_FILENAME= surface_flow +% +% Output file surface adjoint coefficient (w/o extension) +SURFACE_ADJ_FILENAME= surface_adjoint +% +% Writing solution file frequency +OUTPUT_WRT_FREQ= 5000 +% +SCREEN_WRT_FREQ_INNER= 100 diff --git a/TestCases/hom_euler/Ringleb/Triangle50X50_HalfGeom_nPoly4/Ringleb_WallBC.cfg b/TestCases/hom_euler/Ringleb/Triangle50X50_HalfGeom_nPoly4/Ringleb_WallBC.cfg index c6ca2aa51c2..fed3746bd06 100644 --- a/TestCases/hom_euler/Ringleb/Triangle50X50_HalfGeom_nPoly4/Ringleb_WallBC.cfg +++ b/TestCases/hom_euler/Ringleb/Triangle50X50_HalfGeom_nPoly4/Ringleb_WallBC.cfg @@ -1,180 +1,179 @@ -% -% Ringleb test case: Make sure to compile the executable with the -% flag -DRINGLEB to set the appropriate initial and boundary conditions. -% -% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% -% -% Physical governing equations (EULER, NAVIER_STOKES, -% FEM_EULER, FEM_NAVIER_STOKES, -% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, -% POISSON_EQUATION) -SOLVER= FEM_EULER -% -% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) -MATH_PROBLEM= DIRECT -% -% Restart solution (NO, YES) -RESTART_SOL= NO -%RESTART_SOL= YES - -% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% -% -% Mach number (non-dimensional, based on the free-stream values) -MACH_NUMBER= 0.8 -% -% Angle of attack (degrees) -AoA= 0.0 -% -% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) -FREESTREAM_PRESSURE= 101325.0 -% -% Free-stream temperature (273.15 K by default) -FREESTREAM_TEMPERATURE= 273.15 - -% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% -% -% Ratio of specific heats (1.4 (air), only for compressible flows) -GAMMA_VALUE= 1.4 -% -% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) -GAS_CONSTANT= 287.87 - -% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% -% -% Reference origin for moment computation -REF_ORIGIN_MOMENT_X = 0.25 -REF_ORIGIN_MOMENT_Y = 0.00 -REF_ORIGIN_MOMENT_Z = 0.00 -% -% Reference length for pitching, rolling, and yawing non-dimensional moment -REF_LENGTH_MOMENT= 1.0 -% -% Reference area for force coefficients (0 implies automatic calculation) -REF_AREA= 1.0 -% -% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, -% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) -REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE - -% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% -% -% Marker of the Euler boundary (NONE = no marker) -MARKER_EULER= ( LeftBoundary, RightBoundary ) -% -% Custom boundaries -MARKER_CUSTOM= ( BottomBoundary, TopBoundary ) -%MARKER_CUSTOM= ( BottomBoundary, LeftBoundary, RightBoundary, TopBoundary ) - -% ------------------------ SURFACES IDENTIFICATION ----------------------------% -% -% Marker(s) of the surface in the surface flow solution file -MARKER_PLOTTING = ( LeftBoundary, RightBoundary ) -% -% Marker(s) of the surface where the non-dimensional coefficients are evaluated. -MARKER_MONITORING = ( LeftBoundary, RightBoundary ) -% -% Marker(s) of the surface where obj. func. (design problem) will be evaluated -MARKER_DESIGNING = ( LeftBoundary, RightBoundary ) - -% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% -% -% Courant-Friedrichs-Lewy condition of the finest grid -CFL_NUMBER= 2.5 -%CFL_NUMBER= 0.2 % For AUSM -% -% Number of total iterations -EXT_ITER= 10000 -%EXT_ITER= 1 -% -% Runge-Kutta alpha coefficients -%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5, 1.0 ) -RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) - -% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% -% -% Convective numerical method (DG) -NUM_METHOD_FEM_FLOW= DG -% -% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) -RIEMANN_SOLVER_FEM= ROE -%RIEMANN_SOLVER_FEM= AUSM -% -% Constant factor applied for quadrature with straight elements (2.0 by default) -QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 -%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 -% -% Constant factor applied for quadrature with curved elements (3.0 by default) -QUADRATURE_FACTOR_CURVED_FEM = 3.0 -%QUADRATURE_FACTOR_CURVED_FEM = 2.0 -% -% Time discretization (RUNGE-KUTTA_EXPLICIT) -TIME_DISCRE_FEM_FLOW= RUNGE-KUTTA_EXPLICIT -% - -% --------------------------- CONVERGENCE PARAMETERS --------------------------% -% -% Convergence criteria (CAUCHY, RESIDUAL) -CONV_CRITERIA= RESIDUAL -% -% -% Min value of the residual (log10 of the residual) -CONV_RESIDUAL_MINVAL= -8 -% -% Start Cauchy criteria at iteration number -CONV_STARTITER= 10 -% -% Number of elements to apply the criteria -CONV_CAUCHY_ELEMS= 100 -% -% Epsilon to control the series convergence -CONV_CAUCHY_EPS= 1E-6 -% - -% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% -% Mesh input file -MESH_FILENAME= TriangleUnstr50X50_HalfGeom_nPoly4.su2 -% -% Mesh input file format (SU2, CGNS, NETCDF_ASCII) -MESH_FORMAT= SU2 -% -% Mesh output file -MESH_OUT_FILENAME= mesh_out.su2 -% -% Restart flow input file -SOLUTION_FILENAME= solution_flow.dat -% -% Restart adjoint input file -SOLUTION_ADJ_FILENAME= solution_adj.dat -% -% Output tabular format (CSV, TECPLOT) -TABULAR_FORMAT= CSV -% -% Output file convergence history (w/o extension) -CONV_FILENAME= history -% -% Output file restart flow -RESTART_FILENAME= restart_flow.dat -% -% Output file restart adjoint -RESTART_ADJ_FILENAME= restart_adj.dat -% -% Output file flow (w/o extension) variables -VOLUME_FILENAME= flow -% -% Output file adjoint (w/o extension) variables -VOLUME_ADJ_FILENAME= adjoint -% -% Output Objective function gradient (using continuous adjoint) -GRAD_OBJFUNC_FILENAME= of_grad.dat -% -% Output file surface flow coefficient (w/o extension) -SURFACE_FILENAME= surface_flow -% -% Output file surface adjoint coefficient (w/o extension) -SURFACE_ADJ_FILENAME= surface_adjoint -% -% Writing solution file frequency -OUTPUT_WRT_FREQ= 5000 -% -% Writing convergence history frequency -WRT_CON_FREQ= 100 +% +% Ringleb test case: Make sure to compile the executable with the +% flag -DRINGLEB to set the appropriate initial and boundary conditions. +% +% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% +% +% Physical governing equations (EULER, NAVIER_STOKES, +% FEM_EULER, FEM_NAVIER_STOKES, +% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, +% POISSON_EQUATION) +SOLVER= FEM_EULER +% +% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) +MATH_PROBLEM= DIRECT +% +% Restart solution (NO, YES) +RESTART_SOL= NO +%RESTART_SOL= YES + +% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% +% +% Mach number (non-dimensional, based on the free-stream values) +MACH_NUMBER= 0.8 +% +% Angle of attack (degrees) +AoA= 0.0 +% +% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) +FREESTREAM_PRESSURE= 101325.0 +% +% Free-stream temperature (273.15 K by default) +FREESTREAM_TEMPERATURE= 273.15 + +% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% +% +% Ratio of specific heats (1.4 (air), only for compressible flows) +GAMMA_VALUE= 1.4 +% +% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) +GAS_CONSTANT= 287.87 + +% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% +% +% Reference origin for moment computation +REF_ORIGIN_MOMENT_X = 0.25 +REF_ORIGIN_MOMENT_Y = 0.00 +REF_ORIGIN_MOMENT_Z = 0.00 +% +% Reference length for pitching, rolling, and yawing non-dimensional moment +REF_LENGTH_MOMENT= 1.0 +% +% Reference area for force coefficients (0 implies automatic calculation) +REF_AREA= 1.0 +% +% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, +% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) +REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE + +% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% +% +% Marker of the Euler boundary (NONE = no marker) +MARKER_EULER= ( LeftBoundary, RightBoundary ) +% +% Custom boundaries +MARKER_CUSTOM= ( BottomBoundary, TopBoundary ) +%MARKER_CUSTOM= ( BottomBoundary, LeftBoundary, RightBoundary, TopBoundary ) + +% ------------------------ SURFACES IDENTIFICATION ----------------------------% +% +% Marker(s) of the surface in the surface flow solution file +MARKER_PLOTTING = ( LeftBoundary, RightBoundary ) +% +% Marker(s) of the surface where the non-dimensional coefficients are evaluated. +MARKER_MONITORING = ( LeftBoundary, RightBoundary ) +% +% Marker(s) of the surface where obj. func. (design problem) will be evaluated +MARKER_DESIGNING = ( LeftBoundary, RightBoundary ) + +% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% +% +% Courant-Friedrichs-Lewy condition of the finest grid +CFL_NUMBER= 2.5 +%CFL_NUMBER= 0.2 % For AUSM +% +% Number of total iterations +EXT_ITER= 10000 +%EXT_ITER= 1 +% +% Runge-Kutta alpha coefficients +%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5, 1.0 ) +RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) + +% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% +% +% Convective numerical method (DG) +NUM_METHOD_FEM_FLOW= DG +% +% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) +RIEMANN_SOLVER_FEM= ROE +%RIEMANN_SOLVER_FEM= AUSM +% +% Constant factor applied for quadrature with straight elements (2.0 by default) +QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 +%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 +% +% Constant factor applied for quadrature with curved elements (3.0 by default) +QUADRATURE_FACTOR_CURVED_FEM = 3.0 +%QUADRATURE_FACTOR_CURVED_FEM = 2.0 +% +% Time discretization (RUNGE-KUTTA_EXPLICIT) +TIME_DISCRE_FEM_FLOW= RUNGE-KUTTA_EXPLICIT +% + +% --------------------------- CONVERGENCE PARAMETERS --------------------------% +% +% Convergence criteria (CAUCHY, RESIDUAL) +CONV_CRITERIA= RESIDUAL +% +% +% Min value of the residual (log10 of the residual) +CONV_RESIDUAL_MINVAL= -8 +% +% Start Cauchy criteria at iteration number +CONV_STARTITER= 10 +% +% Number of elements to apply the criteria +CONV_CAUCHY_ELEMS= 100 +% +% Epsilon to control the series convergence +CONV_CAUCHY_EPS= 1E-6 +% + +% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% +% Mesh input file +MESH_FILENAME= TriangleUnstr50X50_HalfGeom_nPoly4.su2 +% +% Mesh input file format (SU2, CGNS, NETCDF_ASCII) +MESH_FORMAT= SU2 +% +% Mesh output file +MESH_OUT_FILENAME= mesh_out.su2 +% +% Restart flow input file +SOLUTION_FILENAME= solution_flow.dat +% +% Restart adjoint input file +SOLUTION_ADJ_FILENAME= solution_adj.dat +% +% Output tabular format (CSV, TECPLOT) +TABULAR_FORMAT= CSV +% +% Output file convergence history (w/o extension) +CONV_FILENAME= history +% +% Output file restart flow +RESTART_FILENAME= restart_flow.dat +% +% Output file restart adjoint +RESTART_ADJ_FILENAME= restart_adj.dat +% +% Output file flow (w/o extension) variables +VOLUME_FILENAME= flow +% +% Output file adjoint (w/o extension) variables +VOLUME_ADJ_FILENAME= adjoint +% +% Output Objective function gradient (using continuous adjoint) +GRAD_OBJFUNC_FILENAME= of_grad.dat +% +% Output file surface flow coefficient (w/o extension) +SURFACE_FILENAME= surface_flow +% +% Output file surface adjoint coefficient (w/o extension) +SURFACE_ADJ_FILENAME= surface_adjoint +% +% Writing solution file frequency +OUTPUT_WRT_FREQ= 5000 +% +SCREEN_WRT_FREQ_INNER= 100 diff --git a/TestCases/hom_euler/Sphere_4thOrder_Hexa/fem_Sphere.cfg b/TestCases/hom_euler/Sphere_4thOrder_Hexa/fem_Sphere.cfg index 0d41274816c..37c565dc4fe 100644 --- a/TestCases/hom_euler/Sphere_4thOrder_Hexa/fem_Sphere.cfg +++ b/TestCases/hom_euler/Sphere_4thOrder_Hexa/fem_Sphere.cfg @@ -179,5 +179,3 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/hom_euler/Sphere_4thOrder_Tet/fem_Sphere.cfg b/TestCases/hom_euler/Sphere_4thOrder_Tet/fem_Sphere.cfg index f3ffcd2d532..958e683811a 100644 --- a/TestCases/hom_euler/Sphere_4thOrder_Tet/fem_Sphere.cfg +++ b/TestCases/hom_euler/Sphere_4thOrder_Tet/fem_Sphere.cfg @@ -183,5 +183,3 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 500 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/hom_euler/SubsonicChannel/nPoly1/fem_SubsonicChannel.cfg b/TestCases/hom_euler/SubsonicChannel/nPoly1/fem_SubsonicChannel.cfg index 2a881304b9b..3c2bad1c8af 100644 --- a/TestCases/hom_euler/SubsonicChannel/nPoly1/fem_SubsonicChannel.cfg +++ b/TestCases/hom_euler/SubsonicChannel/nPoly1/fem_SubsonicChannel.cfg @@ -189,5 +189,4 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 5000 % -% Writing convergence history frequency -WRT_CON_FREQ= 100 +SCREEN_WRT_FREQ_INNER= 100 diff --git a/TestCases/hom_euler/SubsonicChannel/nPoly1/fem_SubsonicChannel_Farfield.cfg b/TestCases/hom_euler/SubsonicChannel/nPoly1/fem_SubsonicChannel_Farfield.cfg index 953c9045586..95bd94df144 100644 --- a/TestCases/hom_euler/SubsonicChannel/nPoly1/fem_SubsonicChannel_Farfield.cfg +++ b/TestCases/hom_euler/SubsonicChannel/nPoly1/fem_SubsonicChannel_Farfield.cfg @@ -182,5 +182,4 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 5000 % -% Writing convergence history frequency -WRT_CON_FREQ= 100 +SCREEN_WRT_FREQ_INNER= 100 diff --git a/TestCases/hom_euler/SubsonicChannel/nPoly2/fem_SubsonicChannel.cfg b/TestCases/hom_euler/SubsonicChannel/nPoly2/fem_SubsonicChannel.cfg index 89a0f70a43b..a76f02ed62f 100644 --- a/TestCases/hom_euler/SubsonicChannel/nPoly2/fem_SubsonicChannel.cfg +++ b/TestCases/hom_euler/SubsonicChannel/nPoly2/fem_SubsonicChannel.cfg @@ -189,5 +189,4 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 5000 % -% Writing convergence history frequency -WRT_CON_FREQ= 100 +SCREEN_WRT_FREQ_INNER= 100 diff --git a/TestCases/hom_euler/SubsonicChannel/nPoly2/fem_SubsonicChannel_Farfield.cfg b/TestCases/hom_euler/SubsonicChannel/nPoly2/fem_SubsonicChannel_Farfield.cfg index 6b93e0a97a7..511c0f5b09a 100644 --- a/TestCases/hom_euler/SubsonicChannel/nPoly2/fem_SubsonicChannel_Farfield.cfg +++ b/TestCases/hom_euler/SubsonicChannel/nPoly2/fem_SubsonicChannel_Farfield.cfg @@ -182,5 +182,4 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 5000 % -% Writing convergence history frequency -WRT_CON_FREQ= 100 +SCREEN_WRT_FREQ_INNER= 100 diff --git a/TestCases/hom_euler/SubsonicChannel/nPoly4/fem_SubsonicChannel.cfg b/TestCases/hom_euler/SubsonicChannel/nPoly4/fem_SubsonicChannel.cfg index 99407c4eb90..f840de5703e 100644 --- a/TestCases/hom_euler/SubsonicChannel/nPoly4/fem_SubsonicChannel.cfg +++ b/TestCases/hom_euler/SubsonicChannel/nPoly4/fem_SubsonicChannel.cfg @@ -189,5 +189,4 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 5000 % -% Writing convergence history frequency -WRT_CON_FREQ= 100 +SCREEN_WRT_FREQ_INNER= 100 diff --git a/TestCases/hom_euler/SubsonicChannel/nPoly4/fem_SubsonicChannel_Farfield.cfg b/TestCases/hom_euler/SubsonicChannel/nPoly4/fem_SubsonicChannel_Farfield.cfg index bc41f32a6cb..c5ea63cb679 100644 --- a/TestCases/hom_euler/SubsonicChannel/nPoly4/fem_SubsonicChannel_Farfield.cfg +++ b/TestCases/hom_euler/SubsonicChannel/nPoly4/fem_SubsonicChannel_Farfield.cfg @@ -182,5 +182,4 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 5000 % -% Writing convergence history frequency -WRT_CON_FREQ= 100 +SCREEN_WRT_FREQ_INNER= 100 diff --git a/TestCases/hom_navierstokes/CylinderViscous/nPoly3/fem_Cylinder_reg.cfg b/TestCases/hom_navierstokes/CylinderViscous/nPoly3/fem_Cylinder_reg.cfg index 1b50fd8bcc4..5cfd4351986 100644 --- a/TestCases/hom_navierstokes/CylinderViscous/nPoly3/fem_Cylinder_reg.cfg +++ b/TestCases/hom_navierstokes/CylinderViscous/nPoly3/fem_Cylinder_reg.cfg @@ -180,8 +180,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output fields SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) diff --git a/TestCases/hom_navierstokes/FlatPlate/nPoly4/lam_flatplate_reg.cfg b/TestCases/hom_navierstokes/FlatPlate/nPoly4/lam_flatplate_reg.cfg index 7190f09c0c4..627256f557d 100644 --- a/TestCases/hom_navierstokes/FlatPlate/nPoly4/lam_flatplate_reg.cfg +++ b/TestCases/hom_navierstokes/FlatPlate/nPoly4/lam_flatplate_reg.cfg @@ -189,8 +189,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 1000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output fields SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) diff --git a/TestCases/hom_navierstokes/SphereViscous/nPoly3_QuadDominant/fem_Sphere_reg.cfg b/TestCases/hom_navierstokes/SphereViscous/nPoly3_QuadDominant/fem_Sphere_reg.cfg index e046ee326a3..08db1994bf0 100644 --- a/TestCases/hom_navierstokes/SphereViscous/nPoly3_QuadDominant/fem_Sphere_reg.cfg +++ b/TestCases/hom_navierstokes/SphereViscous/nPoly3_QuadDominant/fem_Sphere_reg.cfg @@ -182,8 +182,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 2500 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT = (INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) diff --git a/TestCases/hom_navierstokes/SphereViscous/nPoly3_QuadDominant/fem_Sphere_reg_ADER.cfg b/TestCases/hom_navierstokes/SphereViscous/nPoly3_QuadDominant/fem_Sphere_reg_ADER.cfg index e34fac35f9b..5ce695870dc 100644 --- a/TestCases/hom_navierstokes/SphereViscous/nPoly3_QuadDominant/fem_Sphere_reg_ADER.cfg +++ b/TestCases/hom_navierstokes/SphereViscous/nPoly3_QuadDominant/fem_Sphere_reg_ADER.cfg @@ -204,8 +204,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 1000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT = (TIME_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) diff --git a/TestCases/hom_navierstokes/UnsteadyCylinder/nPoly4/fem_unst_cylinder.cfg b/TestCases/hom_navierstokes/UnsteadyCylinder/nPoly4/fem_unst_cylinder.cfg index 8df22aeee6d..37a453851cd 100644 --- a/TestCases/hom_navierstokes/UnsteadyCylinder/nPoly4/fem_unst_cylinder.cfg +++ b/TestCases/hom_navierstokes/UnsteadyCylinder/nPoly4/fem_unst_cylinder.cfg @@ -199,8 +199,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency for physical time steps (dual time) OUTPUT_WRT_FREQ= 10000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (TIME_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) diff --git a/TestCases/hom_navierstokes/UnsteadyCylinder/nPoly4/fem_unst_cylinder_ADER.cfg b/TestCases/hom_navierstokes/UnsteadyCylinder/nPoly4/fem_unst_cylinder_ADER.cfg index ad8297b4a61..1ec7016538e 100644 --- a/TestCases/hom_navierstokes/UnsteadyCylinder/nPoly4/fem_unst_cylinder_ADER.cfg +++ b/TestCases/hom_navierstokes/UnsteadyCylinder/nPoly4/fem_unst_cylinder_ADER.cfg @@ -211,8 +211,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency for physical time steps (dual time) OUTPUT_WRT_FREQ= 10000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (TIME_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) diff --git a/TestCases/incomp_euler/naca0012/incomp_NACA0012.cfg b/TestCases/incomp_euler/naca0012/incomp_NACA0012.cfg index 750dbb6bdfc..f65949007e2 100644 --- a/TestCases/incomp_euler/naca0012/incomp_NACA0012.cfg +++ b/TestCases/incomp_euler/naca0012/incomp_NACA0012.cfg @@ -190,8 +190,6 @@ SURFACE_FILENAME= surface_flow % Writing solution file frequency OUTPUT_WRT_FREQ= 200 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output fields SCREEN_OUTPUT= (INNER_ITER, RMS_PRESSURE, RMS_VELOCITY-X, LIFT, DRAG) diff --git a/TestCases/incomp_navierstokes/bend/lam_bend.cfg b/TestCases/incomp_navierstokes/bend/lam_bend.cfg index 7cc3302a609..4715d36d927 100755 --- a/TestCases/incomp_navierstokes/bend/lam_bend.cfg +++ b/TestCases/incomp_navierstokes/bend/lam_bend.cfg @@ -256,7 +256,5 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 1000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % SCREEN_OUTPUT= (INNER_ITER, RMS_PRESSURE, RMS_VELOCITY-X, LIFT, DRAG) diff --git a/TestCases/incomp_navierstokes/buoyancy_cavity/lam_buoyancy_cavity.cfg b/TestCases/incomp_navierstokes/buoyancy_cavity/lam_buoyancy_cavity.cfg index e3e30cab6eb..565be6880fe 100644 --- a/TestCases/incomp_navierstokes/buoyancy_cavity/lam_buoyancy_cavity.cfg +++ b/TestCases/incomp_navierstokes/buoyancy_cavity/lam_buoyancy_cavity.cfg @@ -260,8 +260,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 100 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output fields SCREEN_OUTPUT= (INNER_ITER, RMS_PRESSURE, RMS_TEMPERATURE, LIFT, DRAG) diff --git a/TestCases/incomp_navierstokes/cylinder/incomp_cylinder.cfg b/TestCases/incomp_navierstokes/cylinder/incomp_cylinder.cfg index e293f0be598..5086b437397 100644 --- a/TestCases/incomp_navierstokes/cylinder/incomp_cylinder.cfg +++ b/TestCases/incomp_navierstokes/cylinder/incomp_cylinder.cfg @@ -187,8 +187,6 @@ SURFACE_FILENAME= surface_flow % Writing solution file frequency OUTPUT_WRT_FREQ= 100 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output fields SCREEN_OUTPUT= (INNER_ITER, RMS_PRESSURE, RMS_VELOCITY-X, LIFT, DRAG) diff --git a/TestCases/incomp_navierstokes/cylinder/poly_cylinder.cfg b/TestCases/incomp_navierstokes/cylinder/poly_cylinder.cfg index 7631efe7498..e9654e572cd 100644 --- a/TestCases/incomp_navierstokes/cylinder/poly_cylinder.cfg +++ b/TestCases/incomp_navierstokes/cylinder/poly_cylinder.cfg @@ -291,8 +291,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output fields SCREEN_OUTPUT= (INNER_ITER, RMS_PRESSURE, RMS_TEMPERATURE, LIFT, DRAG) diff --git a/TestCases/incomp_rans/AhmedBody/turb_ahmed.cfg b/TestCases/incomp_rans/AhmedBody/turb_ahmed.cfg index b907347243e..bfcc4892d16 100644 --- a/TestCases/incomp_rans/AhmedBody/turb_ahmed.cfg +++ b/TestCases/incomp_rans/AhmedBody/turb_ahmed.cfg @@ -338,5 +338,3 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/incomp_rans/naca0012/naca0012.cfg b/TestCases/incomp_rans/naca0012/naca0012.cfg index 281fcdadf8f..1dc386b7c11 100644 --- a/TestCases/incomp_rans/naca0012/naca0012.cfg +++ b/TestCases/incomp_rans/naca0012/naca0012.cfg @@ -246,8 +246,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 100 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output fields SCREEN_OUTPUT= (INNER_ITER, RMS_PRESSURE, RMS_NU_TILDE, LIFT, DRAG) diff --git a/TestCases/incomp_rans/naca0012/naca0012_SST_SUST.cfg b/TestCases/incomp_rans/naca0012/naca0012_SST_SUST.cfg index 0b4d2cd6e4f..030382d564c 100644 --- a/TestCases/incomp_rans/naca0012/naca0012_SST_SUST.cfg +++ b/TestCases/incomp_rans/naca0012/naca0012_SST_SUST.cfg @@ -245,8 +245,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 100 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output fields SCREEN_OUTPUT= (INNER_ITER, RMS_PRESSURE, RMS_TKE, RMS_DISSIPATION, LIFT, DRAG) diff --git a/TestCases/incomp_rans/rough_flatplate/rough_flatplate_incomp.cfg b/TestCases/incomp_rans/rough_flatplate/rough_flatplate_incomp.cfg index 0142f508d27..ce00494b14d 100644 --- a/TestCases/incomp_rans/rough_flatplate/rough_flatplate_incomp.cfg +++ b/TestCases/incomp_rans/rough_flatplate/rough_flatplate_incomp.cfg @@ -283,8 +283,6 @@ SURFACE_FILENAME= surface_flow % Writing solution file frequency OUTPUT_WRT_FREQ= 100 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % SCREEN_OUTPUT= (WALL_TIME,INNER_ITER, RMS_VELOCITY-X, RMS_NU_TILDE, LIFT,DRAG) % diff --git a/TestCases/mms/dg_navierstokes/lam_mms_dg.cfg b/TestCases/mms/dg_navierstokes/lam_mms_dg.cfg index f29f80fef36..cd69dc5c5e9 100644 --- a/TestCases/mms/dg_navierstokes/lam_mms_dg.cfg +++ b/TestCases/mms/dg_navierstokes/lam_mms_dg.cfg @@ -1,184 +1,182 @@ -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% -% -% Physical governing equations (EULER, NAVIER_STOKES, -% FEM_EULER, FEM_NAVIER_STOKES, -% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, -% POISSON_EQUATION) -SOLVER= FEM_NAVIER_STOKES -% -% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) -MATH_PROBLEM= DIRECT -% -% Specify the verification solution(NO_VERIFICATION_SOLUTION, INVISCID_VORTEX, -% RINGLEB, NS_UNIT_QUAD, TAYLOR_GREEN_VORTEX, -% MMS_NS_UNIT_QUAD, USER_DEFINED_SOLUTION) -KIND_VERIFICATION_SOLUTION= MMS_NS_UNIT_QUAD -% -% Restart solution (NO, YES) -RESTART_SOL= NO -%RESTART_SOL= YES - -% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% -% -% Mach number (non-dimensional, based on the free-stream values) -MACH_NUMBER= 0.1 -% -% Reynolds number (non-dimensional, based on the free-stream values) -REYNOLDS_NUMBER= 40 -% -% Angle of attack (degrees) -AoA= 0.0 -% -% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% -% -% Different gas model (STANDARD_AIR, IDEAL_GAS, VW_GAS, PR_GAS) -FLUID_MODEL= IDEAL_GAS -% -% Ratio of specific heats (1.4 (air), only for compressible flows) -GAMMA_VALUE= 1.4 -% -% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) -GAS_CONSTANT= 287.0 - -% --------------------------- VISCOSITY MODEL ---------------------------------% -% -% Viscosity model (SUTHERLAND, CONSTANT_VISCOSITY). -VISCOSITY_MODEL= CONSTANT_VISCOSITY -% -% Molecular Viscosity that would be constant (1.716E-5 by default) -MU_CONSTANT= 10.0 -% -% --------------------------- THERMAL CONDUCTIVITY MODEL ----------------------% -% -% Conductivity model (CONSTANT_CONDUCTIVITY, CONSTANT_PRANDTL). -CONDUCTIVITY_MODEL= CONSTANT_PRANDTL -% -% Laminar Prandtl number -PRANDTL_LAM= 1.0 - -% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% -% -% Reference origin for moment computation -REF_ORIGIN_MOMENT_X = 0.00 -REF_ORIGIN_MOMENT_Y = 0.00 -REF_ORIGIN_MOMENT_Z = 0.00 -% -% Reference length for pitching, rolling, and yawing non-dimensional moment -REF_LENGTH= 1.0 -% -% Reference area for force coefficients (0 implies automatic calculation) -REF_AREA= 1.0 -% -% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, -% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) -REF_DIMENSIONALIZATION= DIMENSIONAL -% -% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% -% -MARKER_CUSTOM= ( BottomBoundary, LeftBoundary, RightBoundary, TopBoundary ) - - -% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% -% -% Courant-Friedrichs-Lewy condition of the finest grid -CFL_NUMBER= 0.03 -% -% Number of total iterations -ITER= 101 -% -% Runge-Kutta alpha coefficients -RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 ) - -% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% -% -% Convective numerical method (DG) -NUM_METHOD_FEM_FLOW= DG -% -% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) -RIEMANN_SOLVER_FEM= ROE -% -% Constant factor applied for quadrature with straight elements (2.0 by default) -QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 -% -% Constant factor applied for quadrature with curved elements (3.0 by default) -QUADRATURE_FACTOR_CURVED_FEM = 2.0 -% -% Factor for the symmetrizing terms in the DG FEM discretization (1.0 by default) -THETA_INTERIOR_PENALTY_DG_FEM = 1.0 -%THETA_INTERIOR_PENALTY_DG_FEM = 0.0 -% -% Time discretization (RUNGE-KUTTA_EXPLICIT) -TIME_DISCRE_FEM_FLOW= RUNGE-KUTTA_EXPLICIT -% -% --------------------------- CONVERGENCE PARAMETERS --------------------------% -% -% Convergence criteria (CAUCHY, RESIDUAL) -CONV_CRITERIA= RESIDUAL -% -% -% Min value of the residual (log10 of the residual) -CONV_RESIDUAL_MINVAL= -8 -% -% Start Cauchy criteria at iteration number -CONV_STARTITER= 10 -% -% Number of elements to apply the criteria -CONV_CAUCHY_ELEMS= 100 -% -% Epsilon to control the series convergence -CONV_CAUCHY_EPS= 1E-6 -% - -% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% -% Mesh input file -MESH_FILENAME= UnitQuadStructured_8X8_nPoly3.su2 -% -% Mesh input file format (SU2, CGNS, NETCDF_ASCII) -MESH_FORMAT= SU2 -% -% Mesh output file -MESH_OUT_FILENAME= mesh_out.su2 -% -% Restart flow input file -SOLUTION_FILENAME= restart_flow.dat -% -% Restart adjoint input file -SOLUTION_ADJ_FILENAME= solution_adj.dat -% -% Output tabular format (CSV, TECPLOT) -TABULAR_FORMAT= CSV -% -% Output file convergence history (w/o extension) -CONV_FILENAME= history -% -% Output file restart flow -RESTART_FILENAME= restart_flow.dat -% -% Output file restart adjoint -RESTART_ADJ_FILENAME= restart_adj.dat -% -% Output file flow (w/o extension) variables -VOLUME_FILENAME= flow -% -% Output file adjoint (w/o extension) variables -VOLUME_ADJ_FILENAME= adjoint -% -% Output Objective function gradient (using continuous adjoint) -GRAD_OBJFUNC_FILENAME= of_grad.dat -% -% Output file surface flow coefficient (w/o extension) -SURFACE_FILENAME= surface_flow -% -% Output file surface adjoint coefficient (w/o extension) -SURFACE_ADJ_FILENAME= surface_adjoint -% -% Writing solution file frequency -OUTPUT_WRT_FREQ= 25000 -% -% Writing convergence history frequency -WRT_CON_FREQ= 1 -% -% Screen output -SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% +% +% Physical governing equations (EULER, NAVIER_STOKES, +% FEM_EULER, FEM_NAVIER_STOKES, +% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, +% POISSON_EQUATION) +SOLVER= FEM_NAVIER_STOKES +% +% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) +MATH_PROBLEM= DIRECT +% +% Specify the verification solution(NO_VERIFICATION_SOLUTION, INVISCID_VORTEX, +% RINGLEB, NS_UNIT_QUAD, TAYLOR_GREEN_VORTEX, +% MMS_NS_UNIT_QUAD, USER_DEFINED_SOLUTION) +KIND_VERIFICATION_SOLUTION= MMS_NS_UNIT_QUAD +% +% Restart solution (NO, YES) +RESTART_SOL= NO +%RESTART_SOL= YES + +% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% +% +% Mach number (non-dimensional, based on the free-stream values) +MACH_NUMBER= 0.1 +% +% Reynolds number (non-dimensional, based on the free-stream values) +REYNOLDS_NUMBER= 40 +% +% Angle of attack (degrees) +AoA= 0.0 +% +% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% +% +% Different gas model (STANDARD_AIR, IDEAL_GAS, VW_GAS, PR_GAS) +FLUID_MODEL= IDEAL_GAS +% +% Ratio of specific heats (1.4 (air), only for compressible flows) +GAMMA_VALUE= 1.4 +% +% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) +GAS_CONSTANT= 287.0 + +% --------------------------- VISCOSITY MODEL ---------------------------------% +% +% Viscosity model (SUTHERLAND, CONSTANT_VISCOSITY). +VISCOSITY_MODEL= CONSTANT_VISCOSITY +% +% Molecular Viscosity that would be constant (1.716E-5 by default) +MU_CONSTANT= 10.0 +% +% --------------------------- THERMAL CONDUCTIVITY MODEL ----------------------% +% +% Conductivity model (CONSTANT_CONDUCTIVITY, CONSTANT_PRANDTL). +CONDUCTIVITY_MODEL= CONSTANT_PRANDTL +% +% Laminar Prandtl number +PRANDTL_LAM= 1.0 + +% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% +% +% Reference origin for moment computation +REF_ORIGIN_MOMENT_X = 0.00 +REF_ORIGIN_MOMENT_Y = 0.00 +REF_ORIGIN_MOMENT_Z = 0.00 +% +% Reference length for pitching, rolling, and yawing non-dimensional moment +REF_LENGTH= 1.0 +% +% Reference area for force coefficients (0 implies automatic calculation) +REF_AREA= 1.0 +% +% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, +% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) +REF_DIMENSIONALIZATION= DIMENSIONAL +% +% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% +% +MARKER_CUSTOM= ( BottomBoundary, LeftBoundary, RightBoundary, TopBoundary ) + + +% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% +% +% Courant-Friedrichs-Lewy condition of the finest grid +CFL_NUMBER= 0.03 +% +% Number of total iterations +ITER= 101 +% +% Runge-Kutta alpha coefficients +RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 ) + +% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% +% +% Convective numerical method (DG) +NUM_METHOD_FEM_FLOW= DG +% +% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) +RIEMANN_SOLVER_FEM= ROE +% +% Constant factor applied for quadrature with straight elements (2.0 by default) +QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 +% +% Constant factor applied for quadrature with curved elements (3.0 by default) +QUADRATURE_FACTOR_CURVED_FEM = 2.0 +% +% Factor for the symmetrizing terms in the DG FEM discretization (1.0 by default) +THETA_INTERIOR_PENALTY_DG_FEM = 1.0 +%THETA_INTERIOR_PENALTY_DG_FEM = 0.0 +% +% Time discretization (RUNGE-KUTTA_EXPLICIT) +TIME_DISCRE_FEM_FLOW= RUNGE-KUTTA_EXPLICIT +% +% --------------------------- CONVERGENCE PARAMETERS --------------------------% +% +% Convergence criteria (CAUCHY, RESIDUAL) +CONV_CRITERIA= RESIDUAL +% +% +% Min value of the residual (log10 of the residual) +CONV_RESIDUAL_MINVAL= -8 +% +% Start Cauchy criteria at iteration number +CONV_STARTITER= 10 +% +% Number of elements to apply the criteria +CONV_CAUCHY_ELEMS= 100 +% +% Epsilon to control the series convergence +CONV_CAUCHY_EPS= 1E-6 +% + +% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% +% Mesh input file +MESH_FILENAME= UnitQuadStructured_8X8_nPoly3.su2 +% +% Mesh input file format (SU2, CGNS, NETCDF_ASCII) +MESH_FORMAT= SU2 +% +% Mesh output file +MESH_OUT_FILENAME= mesh_out.su2 +% +% Restart flow input file +SOLUTION_FILENAME= restart_flow.dat +% +% Restart adjoint input file +SOLUTION_ADJ_FILENAME= solution_adj.dat +% +% Output tabular format (CSV, TECPLOT) +TABULAR_FORMAT= CSV +% +% Output file convergence history (w/o extension) +CONV_FILENAME= history +% +% Output file restart flow +RESTART_FILENAME= restart_flow.dat +% +% Output file restart adjoint +RESTART_ADJ_FILENAME= restart_adj.dat +% +% Output file flow (w/o extension) variables +VOLUME_FILENAME= flow +% +% Output file adjoint (w/o extension) variables +VOLUME_ADJ_FILENAME= adjoint +% +% Output Objective function gradient (using continuous adjoint) +GRAD_OBJFUNC_FILENAME= of_grad.dat +% +% Output file surface flow coefficient (w/o extension) +SURFACE_FILENAME= surface_flow +% +% Output file surface adjoint coefficient (w/o extension) +SURFACE_ADJ_FILENAME= surface_adjoint +% +% Writing solution file frequency +OUTPUT_WRT_FREQ= 25000 +% +% +% Screen output +SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) diff --git a/TestCases/mms/dg_navierstokes_3d/lam_mms_dg_3d.cfg b/TestCases/mms/dg_navierstokes_3d/lam_mms_dg_3d.cfg index cee187d1cb6..eb0519a3047 100644 --- a/TestCases/mms/dg_navierstokes_3d/lam_mms_dg_3d.cfg +++ b/TestCases/mms/dg_navierstokes_3d/lam_mms_dg_3d.cfg @@ -195,8 +195,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 25000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) diff --git a/TestCases/mms/dg_ringleb/ringleb_dg.cfg b/TestCases/mms/dg_ringleb/ringleb_dg.cfg index 326e5639d80..637f01661fd 100644 --- a/TestCases/mms/dg_ringleb/ringleb_dg.cfg +++ b/TestCases/mms/dg_ringleb/ringleb_dg.cfg @@ -1,201 +1,199 @@ -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% % -% SU2 configuration file % -% Case description: Transonic inviscid flow around a NACA0012 airfoil % -% Author: Thomas D. Economon % -% Institution: Stanford University % -% Date: 2014.06.11 % -% File Version 4.0.2 "Cardinal" % -% % -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% -% -% Physical governing equations (EULER, NAVIER_STOKES, -% FEM_EULER, FEM_NAVIER_STOKES, -% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, -% POISSON_EQUATION) -SOLVER= FEM_EULER -% -% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) -MATH_PROBLEM= DIRECT -% -% Specify the verification solution(NO_VERIFICATION_SOLUTION, INVISCID_VORTEX, -% RINGLEB, NS_UNIT_QUAD, TAYLOR_GREEN_VORTEX, -% MMS_NS_UNIT_QUAD, USER_DEFINED_SOLUTION) -KIND_VERIFICATION_SOLUTION= RINGLEB -% -% Restart solution (NO, YES) -RESTART_SOL= NO -%RESTART_SOL= YES - -% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% -% -% Mach number (non-dimensional, based on the free-stream values) -MACH_NUMBER= 0.8 -% -% Angle of attack (degrees) -AoA= 0.0 -% -% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) -FREESTREAM_PRESSURE= 101325.0 -% -% Free-stream temperature (273.15 K by default) -FREESTREAM_TEMPERATURE= 273.15 - -% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% -% -% Ratio of specific heats (1.4 (air), only for compressible flows) -GAMMA_VALUE= 1.4 -% -% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) -GAS_CONSTANT= 287.87 - -% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% -% -% Reference origin for moment computation -REF_ORIGIN_MOMENT_X = 0.25 -REF_ORIGIN_MOMENT_Y = 0.00 -REF_ORIGIN_MOMENT_Z = 0.00 -% -% Reference length for pitching, rolling, and yawing non-dimensional moment -REF_LENGTH= 1.0 -% -% Reference area for force coefficients (0 implies automatic calculation) -REF_AREA= 1.0 -% -% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, -% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) -REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE - -% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% -% -% Marker of the Euler boundary (NONE = no marker) -%MARKER_EULER= ( LeftBoundary, RightBoundary ) -% -% Custom boundaries -%MARKER_CUSTOM= ( Symmetry, TopBoundary ) -MARKER_CUSTOM= ( Symmetry, LeftBoundary, RightBoundary, TopBoundary ) - -% ------------------------ SURFACES IDENTIFICATION ----------------------------% -% -% Marker(s) of the surface in the surface flow solution file -MARKER_PLOTTING = ( LeftBoundary, RightBoundary ) -% -% Marker(s) of the surface where the non-dimensional coefficients are evaluated. -MARKER_MONITORING = ( LeftBoundary, RightBoundary ) -% -% Marker(s) of the surface where obj. func. (design problem) will be evaluated -MARKER_DESIGNING = ( LeftBoundary, RightBoundary ) - -% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% -% -% Courant-Friedrichs-Lewy condition of the finest grid -CFL_NUMBER= 1.0 -%CFL_NUMBER= 0.2 % For AUSM -% -% Number of total iterations -ITER= 101 -%ITER= 1 -% -% Runge-Kutta alpha coefficients -%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5, 1.0 ) -RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) - -% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% -% -% Convective numerical method (DG) -NUM_METHOD_FEM_FLOW= DG -% -% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) -RIEMANN_SOLVER_FEM= ROE -%RIEMANN_SOLVER_FEM= AUSM -% -% Constant factor applied for quadrature with straight elements (2.0 by default) -QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 -%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 -% -% Constant factor applied for quadrature with curved elements (3.0 by default) -QUADRATURE_FACTOR_CURVED_FEM = 3.0 -%QUADRATURE_FACTOR_CURVED_FEM = 2.0 -% -% Time discretization (RUNGE-KUTTA_EXPLICIT) -TIME_DISCRE_FEM_FLOW= RUNGE-KUTTA_EXPLICIT -% -% -% Compute the entropy in the fluid model (YES, NO) -COMPUTE_ENTROPY_FLUID_MODEL= YES -% -% Use the lumped mass matrix for steady DGFEM computations (NO, YES) -USE_LUMPED_MASSMATRIX_DGFEM= YES - -% --------------------------- CONVERGENCE PARAMETERS --------------------------% -% -% Convergence criteria (CAUCHY, RESIDUAL) -CONV_CRITERIA= RESIDUAL -% -% -% Min value of the residual (log10 of the residual) -CONV_RESIDUAL_MINVAL= -8 -% -% Start Cauchy criteria at iteration number -CONV_STARTITER= 10 -% -% Number of elements to apply the criteria -CONV_CAUCHY_ELEMS= 100 -% -% Epsilon to control the series convergence -CONV_CAUCHY_EPS= 1E-6 -% - -% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% -% Mesh input file -MESH_FILENAME= QuadDominant25X25_nPoly3.su2 -% -% Mesh input file format (SU2, CGNS, NETCDF_ASCII) -MESH_FORMAT= SU2 -% -% Mesh output file -MESH_OUT_FILENAME= mesh_out.su2 -% -% Restart flow input file -SOLUTION_FILENAME= solution_flow.dat -% -% Restart adjoint input file -SOLUTION_ADJ_FILENAME= solution_adj.dat -% -% Output tabular format (CSV, TECPLOT) -TABULAR_FORMAT= CSV -% -% Output file convergence history (w/o extension) -CONV_FILENAME= history -% -% Output file restart flow -RESTART_FILENAME= restart_flow.dat -% -% Output file restart adjoint -RESTART_ADJ_FILENAME= restart_adj.dat -% -% Output file flow (w/o extension) variables -VOLUME_FILENAME= flow -% -% Output file adjoint (w/o extension) variables -VOLUME_ADJ_FILENAME= adjoint -% -% Output Objective function gradient (using continuous adjoint) -GRAD_OBJFUNC_FILENAME= of_grad.dat -% -% Output file surface flow coefficient (w/o extension) -SURFACE_FILENAME= surface_flow -% -% Output file surface adjoint coefficient (w/o extension) -SURFACE_ADJ_FILENAME= surface_adjoint -% -% Writing solution file frequency -OUTPUT_WRT_FREQ= 5000 -% -% Writing convergence history frequency -WRT_CON_FREQ= 1 -% -% Screen output -SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% % +% SU2 configuration file % +% Case description: Transonic inviscid flow around a NACA0012 airfoil % +% Author: Thomas D. Economon % +% Institution: Stanford University % +% Date: 2014.06.11 % +% File Version 4.0.2 "Cardinal" % +% % +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% +% +% Physical governing equations (EULER, NAVIER_STOKES, +% FEM_EULER, FEM_NAVIER_STOKES, +% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, +% POISSON_EQUATION) +SOLVER= FEM_EULER +% +% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) +MATH_PROBLEM= DIRECT +% +% Specify the verification solution(NO_VERIFICATION_SOLUTION, INVISCID_VORTEX, +% RINGLEB, NS_UNIT_QUAD, TAYLOR_GREEN_VORTEX, +% MMS_NS_UNIT_QUAD, USER_DEFINED_SOLUTION) +KIND_VERIFICATION_SOLUTION= RINGLEB +% +% Restart solution (NO, YES) +RESTART_SOL= NO +%RESTART_SOL= YES + +% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% +% +% Mach number (non-dimensional, based on the free-stream values) +MACH_NUMBER= 0.8 +% +% Angle of attack (degrees) +AoA= 0.0 +% +% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) +FREESTREAM_PRESSURE= 101325.0 +% +% Free-stream temperature (273.15 K by default) +FREESTREAM_TEMPERATURE= 273.15 + +% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------% +% +% Ratio of specific heats (1.4 (air), only for compressible flows) +GAMMA_VALUE= 1.4 +% +% Specific gas constant (287.87 J/kg*K (air), only for compressible flows) +GAS_CONSTANT= 287.87 + +% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% +% +% Reference origin for moment computation +REF_ORIGIN_MOMENT_X = 0.25 +REF_ORIGIN_MOMENT_Y = 0.00 +REF_ORIGIN_MOMENT_Z = 0.00 +% +% Reference length for pitching, rolling, and yawing non-dimensional moment +REF_LENGTH= 1.0 +% +% Reference area for force coefficients (0 implies automatic calculation) +REF_AREA= 1.0 +% +% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, +% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) +REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE + +% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% +% +% Marker of the Euler boundary (NONE = no marker) +%MARKER_EULER= ( LeftBoundary, RightBoundary ) +% +% Custom boundaries +%MARKER_CUSTOM= ( Symmetry, TopBoundary ) +MARKER_CUSTOM= ( Symmetry, LeftBoundary, RightBoundary, TopBoundary ) + +% ------------------------ SURFACES IDENTIFICATION ----------------------------% +% +% Marker(s) of the surface in the surface flow solution file +MARKER_PLOTTING = ( LeftBoundary, RightBoundary ) +% +% Marker(s) of the surface where the non-dimensional coefficients are evaluated. +MARKER_MONITORING = ( LeftBoundary, RightBoundary ) +% +% Marker(s) of the surface where obj. func. (design problem) will be evaluated +MARKER_DESIGNING = ( LeftBoundary, RightBoundary ) + +% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% +% +% Courant-Friedrichs-Lewy condition of the finest grid +CFL_NUMBER= 1.0 +%CFL_NUMBER= 0.2 % For AUSM +% +% Number of total iterations +ITER= 101 +%ITER= 1 +% +% Runge-Kutta alpha coefficients +%RK_ALPHA_COEFF= ( 0.25, 0.166667, 0.375, 0.5, 1.0 ) +RK_ALPHA_COEFF= ( 0.666667, 0.666667, 1.0 ) + +% ------------------ FEM FLOW NUMERICAL METHOD DEFINITION ----------------------% +% +% Convective numerical method (DG) +NUM_METHOD_FEM_FLOW= DG +% +% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER) +RIEMANN_SOLVER_FEM= ROE +%RIEMANN_SOLVER_FEM= AUSM +% +% Constant factor applied for quadrature with straight elements (2.0 by default) +QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0 +%QUADRATURE_FACTOR_STRAIGHT_FEM = 3.0 +% +% Constant factor applied for quadrature with curved elements (3.0 by default) +QUADRATURE_FACTOR_CURVED_FEM = 3.0 +%QUADRATURE_FACTOR_CURVED_FEM = 2.0 +% +% Time discretization (RUNGE-KUTTA_EXPLICIT) +TIME_DISCRE_FEM_FLOW= RUNGE-KUTTA_EXPLICIT +% +% +% Compute the entropy in the fluid model (YES, NO) +COMPUTE_ENTROPY_FLUID_MODEL= YES +% +% Use the lumped mass matrix for steady DGFEM computations (NO, YES) +USE_LUMPED_MASSMATRIX_DGFEM= YES + +% --------------------------- CONVERGENCE PARAMETERS --------------------------% +% +% Convergence criteria (CAUCHY, RESIDUAL) +CONV_CRITERIA= RESIDUAL +% +% +% Min value of the residual (log10 of the residual) +CONV_RESIDUAL_MINVAL= -8 +% +% Start Cauchy criteria at iteration number +CONV_STARTITER= 10 +% +% Number of elements to apply the criteria +CONV_CAUCHY_ELEMS= 100 +% +% Epsilon to control the series convergence +CONV_CAUCHY_EPS= 1E-6 +% + +% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% +% Mesh input file +MESH_FILENAME= QuadDominant25X25_nPoly3.su2 +% +% Mesh input file format (SU2, CGNS, NETCDF_ASCII) +MESH_FORMAT= SU2 +% +% Mesh output file +MESH_OUT_FILENAME= mesh_out.su2 +% +% Restart flow input file +SOLUTION_FILENAME= solution_flow.dat +% +% Restart adjoint input file +SOLUTION_ADJ_FILENAME= solution_adj.dat +% +% Output tabular format (CSV, TECPLOT) +TABULAR_FORMAT= CSV +% +% Output file convergence history (w/o extension) +CONV_FILENAME= history +% +% Output file restart flow +RESTART_FILENAME= restart_flow.dat +% +% Output file restart adjoint +RESTART_ADJ_FILENAME= restart_adj.dat +% +% Output file flow (w/o extension) variables +VOLUME_FILENAME= flow +% +% Output file adjoint (w/o extension) variables +VOLUME_ADJ_FILENAME= adjoint +% +% Output Objective function gradient (using continuous adjoint) +GRAD_OBJFUNC_FILENAME= of_grad.dat +% +% Output file surface flow coefficient (w/o extension) +SURFACE_FILENAME= surface_flow +% +% Output file surface adjoint coefficient (w/o extension) +SURFACE_ADJ_FILENAME= surface_adjoint +% +% Writing solution file frequency +OUTPUT_WRT_FREQ= 5000 +% +% +% Screen output +SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) diff --git a/TestCases/mms/fvm_incomp_euler/inv_mms_jst.cfg b/TestCases/mms/fvm_incomp_euler/inv_mms_jst.cfg index 381f21f3a6d..b65418d3138 100755 --- a/TestCases/mms/fvm_incomp_euler/inv_mms_jst.cfg +++ b/TestCases/mms/fvm_incomp_euler/inv_mms_jst.cfg @@ -222,8 +222,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 50 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (INNER_ITER, RMS_PRESSURE, RMS_VELOCITY-X, LIFT, DRAG) diff --git a/TestCases/mms/fvm_incomp_navierstokes/lam_mms_fds.cfg b/TestCases/mms/fvm_incomp_navierstokes/lam_mms_fds.cfg index b09fe8541f4..4cc0305b843 100755 --- a/TestCases/mms/fvm_incomp_navierstokes/lam_mms_fds.cfg +++ b/TestCases/mms/fvm_incomp_navierstokes/lam_mms_fds.cfg @@ -244,8 +244,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 50 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (INNER_ITER, RMS_PRESSURE, RMS_VELOCITY-X, LIFT, DRAG) diff --git a/TestCases/mms/fvm_navierstokes/lam_mms_roe.cfg b/TestCases/mms/fvm_navierstokes/lam_mms_roe.cfg index 3cbdb0652d7..5e6aa1903f8 100755 --- a/TestCases/mms/fvm_navierstokes/lam_mms_roe.cfg +++ b/TestCases/mms/fvm_navierstokes/lam_mms_roe.cfg @@ -261,8 +261,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 50 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) diff --git a/TestCases/moving_wall/cavity/lam_cavity.cfg b/TestCases/moving_wall/cavity/lam_cavity.cfg index 9acfd89fe20..744f0ba6001 100644 --- a/TestCases/moving_wall/cavity/lam_cavity.cfg +++ b/TestCases/moving_wall/cavity/lam_cavity.cfg @@ -229,8 +229,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) diff --git a/TestCases/moving_wall/spinning_cylinder/spinning_cylinder.cfg b/TestCases/moving_wall/spinning_cylinder/spinning_cylinder.cfg index 06bfec996d1..c4ddc5ae39b 100644 --- a/TestCases/moving_wall/spinning_cylinder/spinning_cylinder.cfg +++ b/TestCases/moving_wall/spinning_cylinder/spinning_cylinder.cfg @@ -246,8 +246,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 100 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) diff --git a/TestCases/multiple_ffd/naca0012/inv_NACA0012_ffd.cfg b/TestCases/multiple_ffd/naca0012/inv_NACA0012_ffd.cfg index ca07fef696f..7bc2f03ad04 100644 --- a/TestCases/multiple_ffd/naca0012/inv_NACA0012_ffd.cfg +++ b/TestCases/multiple_ffd/naca0012/inv_NACA0012_ffd.cfg @@ -319,8 +319,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 50 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % HISTORY_OUTPUT=(ITER, RMS_RES, AERO_COEFF, D_AERO_COEFF) % --------------------- OPTIMAL SHAPE DESIGN DEFINITION -----------------------% diff --git a/TestCases/navierstokes/cylinder/cylinder_lowmach.cfg b/TestCases/navierstokes/cylinder/cylinder_lowmach.cfg index 891084d267d..05c44c49ab9 100644 --- a/TestCases/navierstokes/cylinder/cylinder_lowmach.cfg +++ b/TestCases/navierstokes/cylinder/cylinder_lowmach.cfg @@ -221,8 +221,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output fields SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) diff --git a/TestCases/navierstokes/cylinder/lam_cylinder.cfg b/TestCases/navierstokes/cylinder/lam_cylinder.cfg index 78ec9a9c804..53f81fd2ebf 100644 --- a/TestCases/navierstokes/cylinder/lam_cylinder.cfg +++ b/TestCases/navierstokes/cylinder/lam_cylinder.cfg @@ -215,8 +215,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output fields SCREEN_OUTPUT = (INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) diff --git a/TestCases/navierstokes/flatplate/lam_flatplate.cfg b/TestCases/navierstokes/flatplate/lam_flatplate.cfg index 45d61302e25..66924f9aa18 100644 --- a/TestCases/navierstokes/flatplate/lam_flatplate.cfg +++ b/TestCases/navierstokes/flatplate/lam_flatplate.cfg @@ -233,8 +233,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output fields SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) diff --git a/TestCases/navierstokes/naca0012/lam_NACA0012.cfg b/TestCases/navierstokes/naca0012/lam_NACA0012.cfg index 2078642f66a..4174cea0999 100644 --- a/TestCases/navierstokes/naca0012/lam_NACA0012.cfg +++ b/TestCases/navierstokes/naca0012/lam_NACA0012.cfg @@ -210,6 +210,4 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/navierstokes/poiseuille/lam_poiseuille.cfg b/TestCases/navierstokes/poiseuille/lam_poiseuille.cfg index 98f9b6ceaaf..6c0f5647e36 100644 --- a/TestCases/navierstokes/poiseuille/lam_poiseuille.cfg +++ b/TestCases/navierstokes/poiseuille/lam_poiseuille.cfg @@ -256,8 +256,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 500 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT=(INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) diff --git a/TestCases/navierstokes/poiseuille/profile_poiseuille.cfg b/TestCases/navierstokes/poiseuille/profile_poiseuille.cfg index e63d3508215..e1704782600 100644 --- a/TestCases/navierstokes/poiseuille/profile_poiseuille.cfg +++ b/TestCases/navierstokes/poiseuille/profile_poiseuille.cfg @@ -290,8 +290,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 25 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output fields SCREEN_OUTPUT=(INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) diff --git a/TestCases/nicf/LS89/turb_SA_PR.cfg b/TestCases/nicf/LS89/turb_SA_PR.cfg index 22ff6c9f1bc..ed25c46db18 100644 --- a/TestCases/nicf/LS89/turb_SA_PR.cfg +++ b/TestCases/nicf/LS89/turb_SA_PR.cfg @@ -317,8 +317,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 500 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_NU_TILDE, LIFT, DRAG) diff --git a/TestCases/nicf/LS89/turb_SST_PR.cfg b/TestCases/nicf/LS89/turb_SST_PR.cfg index fe900a95af8..f686f935135 100644 --- a/TestCases/nicf/LS89/turb_SST_PR.cfg +++ b/TestCases/nicf/LS89/turb_SST_PR.cfg @@ -316,8 +316,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 500 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output diff --git a/TestCases/nicf/edge/edge_PPR.cfg b/TestCases/nicf/edge/edge_PPR.cfg index 9a6579d955a..fb5ec592611 100644 --- a/TestCases/nicf/edge/edge_PPR.cfg +++ b/TestCases/nicf/edge/edge_PPR.cfg @@ -237,8 +237,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) diff --git a/TestCases/nicf/edge/edge_VW.cfg b/TestCases/nicf/edge/edge_VW.cfg index 80ef8130d97..b6dca66355f 100644 --- a/TestCases/nicf/edge/edge_VW.cfg +++ b/TestCases/nicf/edge/edge_VW.cfg @@ -237,8 +237,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) diff --git a/TestCases/nonequilibrium/invwedge/invwedge.cfg b/TestCases/nonequilibrium/invwedge/invwedge.cfg index d3e3a9c8c3c..59134cb105c 100644 --- a/TestCases/nonequilibrium/invwedge/invwedge.cfg +++ b/TestCases/nonequilibrium/invwedge/invwedge.cfg @@ -187,8 +187,6 @@ SURFACE_FILENAME= soln_surface % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % -% Writing convergence history frequency -WRT_CON_FREQ= 1 OUTPUT_WRT_FREQ= 100 diff --git a/TestCases/nonequilibrium/thermalbath/finitechemistry/thermalbath.cfg b/TestCases/nonequilibrium/thermalbath/finitechemistry/thermalbath.cfg index 40bfe8b7d1e..e167fb40610 100644 --- a/TestCases/nonequilibrium/thermalbath/finitechemistry/thermalbath.cfg +++ b/TestCases/nonequilibrium/thermalbath/finitechemistry/thermalbath.cfg @@ -1,175 +1,174 @@ -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% % -% SU2 configuration file % -% Case description: 2D 5x5 Square Test Case representing a thermal bath % -% with thermal nonequilibrium and finite-rate chemistry % -% % -% Author: C. Garbacz % -% Institution: Strathclyde University % -% Date: 2019.04.10 % -% File Version 7.0.6 "Falcon" % -% % -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% -% -% Physical governing equations (EULER, NAVIER_STOKES, -% WAVE_EQUATION, HEAT_EQUATION, FEM_ELASTICITY, -% POISSON_EQUATION) -SOLVER= NEMO_EULER -% -GAS_MODEL= N2 -% -GAS_COMPOSITION=(0.666667, 0.333333) -% -% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) -MATH_PROBLEM= DIRECT -% -READ_BINARY_RESTART= NO -% -TIME_MARCHING=TIME_STEPPING -TIME_DOMAIN= YES -TIME_STEP= 0.000000001 % 1.e-09 -MAX_TIME= 0.001 -% -% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE_STREAM DEFINITION ----------% -% -% Mach number (non-dimensional, based on the free-stream values) -MACH_NUMBER= 0.0 -% Angle of attack (degrees) -AOA = 0.0 -% -% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) -FREESTREAM_PRESSURE = 101325.0 -% -% Free-stream temperature (288.15 K by default) -FREESTREAM_TEMPERATURE = 30000 -% -%Free-stream vibrational temperature (288.15 K by default) -FREESTREAM_TEMPERATURE_VE= 1000 -% -% ---- NONEQUILIBRIUM GAS, IDEAL GAS, POLYTROPIC, VAN DER WAALS AND PENG ROBINSON CONSTANTS -------% -% -% Fluid model (STANDARD_AIR, IDEAL_GAS, VW_GAS, PR_GAS, -% CONSTANT_DENSITY, INC_IDEAL_GAS, INC_IDEAL_GAS_POLY, MUTATIONPP, USER_DEFINED_NONEQ) -FLUID_MODEL= USER_DEFINED_NONEQ -% -% -------------------- BOUNDARY CONDITION DEFINITION --------------------------% -% -% Euler wall boundary marker(s) (NONE = no marker) -MARKER_SYM= (left,bottom,top,right ) -% -% Marker(s) of the surface to be plotted or designed -%MARKER_MONITORING= ( bottom ) -% -% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% -% -% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES) -NUM_METHOD_GRAD= WEIGHTED_LEAST_SQUARES -% -% Courant-Friedrichs-Lewy condition of the finest grid -CFL_NUMBER= 1.0 -% -% Number of total iterations -TIME_ITER= 11 -% -% ------------------------ LINEAR SOLVER DEFINITION ---------------------------% -% -% Linear solver for implicit formulations (BCGSTAB, FGMRES) -LINEAR_SOLVER= FGMRES -% -% Preconditioner of the Krylov linear solver (JACOBI, LINELET, LU_SGS) -LINEAR_SOLVER_PREC= ILU -% -% Minimum error of the linear solver for implicit formulations -LINEAR_SOLVER_ERROR= 1E-10 -% -% Max number of iterations of the linear solver for the implicit formulation -LINEAR_SOLVER_ITER= 10 - -% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------% -% -% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC, -% TURKEL_PREC, MSW) -CONV_NUM_METHOD_FLOW= AUSM -% -% Monotonic Upwind Scheme for Conservation Laws (TVD) in the flow equations. -% Required for 2nd order upwind schemes (NO, YES) -MUSCL_FLOW= NO -% -% Slope limiter (VENKATAKRISHNAN, MINMOD) -SLOPE_LIMITER_FLOW= VENKATAKRISHNAN -% -% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT) -TIME_DISCRE_FLOW= EULER_EXPLICIT - -% --------------------------- CONVERGENCE PARAMETERS --------------------------% -% -% Convergence criteria (CAUCHY, RESIDUAL) -% -CONV_CRITERIA= RESIDUAL -% -% Min value of the residual (log10 of the residual) -CONV_RESIDUAL_MINVAL= -50 -% -% Start convergence criteria at iteration number -CONV_STARTITER= 10 -% -% Number of elements to apply the criteria -CONV_CAUCHY_ELEMS= 100 -% -% Epsilon to control the series convergence -CONV_CAUCHY_EPS= 1E-6 -% -% Function to apply the criteria (LIFT, DRAG, NEARFIELD_PRESS, SENS_GEOMETRY, -% SENS_MACH, DELTA_LIFT, DELTA_DRAG) -OBJECTIVE_FUNCTION= DRAG -% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% -% -% Mesh input file -MESH_FILENAME= 5x5Mesh.su2 -% -% Mesh input file format (SU2, CGNS, NETCDF_ASCII) -MESH_FORMAT= SU2 -% -% Mesh output file -MESH_OUT_FILENAME= mesh_out.su2 -% -% Restart flow input file -SOLUTION_FILENAME= restart_flow.dat -% -% Restart adjoint input file -SOLUTION_ADJ_FILENAME= solution_adj.dat -% -% Output file format (PARAVIEW, TECPLOT, STL) -TABULAR_FORMAT= TECPLOT -OUTPUT_FILES= (RESTART_ASCII, TECPLOT_ASCII) -% -% Output file convergence history (w/o extension) -CONV_FILENAME= history -% -% Output file restart flow -RESTART_FILENAME= restart_flow.dat -% -% Output file restart adjoint -RESTART_ADJ_FILENAME= restart_adj.dat -% -% Output file flow (w/o extension) variables -VOLUME_FILENAME= test_flow -% -% Output file adjoint (w/o extension) variables -VOLUME_ADJ_FILENAME= adjoint -% -% Output objective function gradient (using continuous adjoint) -GRAD_OBJFUNC_FILENAME= of_grad.dat -% -% Output file surface flow coefficient (w/o extension) -SURFACE_FILENAME= surface_flow -% -% Output file surface adjoint coefficient (w/o extension) -SURFACE_ADJ_FILENAME= surface_adjoint -% -% Writing convergence history frequency -WRT_CON_FREQ= 10 - -OUTPUT_WRT_FREQ= 10 +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% % +% SU2 configuration file % +% Case description: 2D 5x5 Square Test Case representing a thermal bath % +% with thermal nonequilibrium and finite-rate chemistry % +% % +% Author: C. Garbacz % +% Institution: Strathclyde University % +% Date: 2019.04.10 % +% File Version 7.0.6 "Falcon" % +% % +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% +% +% Physical governing equations (EULER, NAVIER_STOKES, +% WAVE_EQUATION, HEAT_EQUATION, FEM_ELASTICITY, +% POISSON_EQUATION) +SOLVER= NEMO_EULER +% +GAS_MODEL= N2 +% +GAS_COMPOSITION=(0.666667, 0.333333) +% +% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) +MATH_PROBLEM= DIRECT +% +READ_BINARY_RESTART= NO +% +TIME_MARCHING=TIME_STEPPING +TIME_DOMAIN= YES +TIME_STEP= 0.000000001 % 1.e-09 +MAX_TIME= 0.001 +% +% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE_STREAM DEFINITION ----------% +% +% Mach number (non-dimensional, based on the free-stream values) +MACH_NUMBER= 0.0 +% Angle of attack (degrees) +AOA = 0.0 +% +% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) +FREESTREAM_PRESSURE = 101325.0 +% +% Free-stream temperature (288.15 K by default) +FREESTREAM_TEMPERATURE = 30000 +% +%Free-stream vibrational temperature (288.15 K by default) +FREESTREAM_TEMPERATURE_VE= 1000 +% +% ---- NONEQUILIBRIUM GAS, IDEAL GAS, POLYTROPIC, VAN DER WAALS AND PENG ROBINSON CONSTANTS -------% +% +% Fluid model (STANDARD_AIR, IDEAL_GAS, VW_GAS, PR_GAS, +% CONSTANT_DENSITY, INC_IDEAL_GAS, INC_IDEAL_GAS_POLY, MUTATIONPP, USER_DEFINED_NONEQ) +FLUID_MODEL= USER_DEFINED_NONEQ +% +% -------------------- BOUNDARY CONDITION DEFINITION --------------------------% +% +% Euler wall boundary marker(s) (NONE = no marker) +MARKER_SYM= (left,bottom,top,right ) +% +% Marker(s) of the surface to be plotted or designed +%MARKER_MONITORING= ( bottom ) +% +% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% +% +% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES) +NUM_METHOD_GRAD= WEIGHTED_LEAST_SQUARES +% +% Courant-Friedrichs-Lewy condition of the finest grid +CFL_NUMBER= 1.0 +% +% Number of total iterations +TIME_ITER= 11 +% +% ------------------------ LINEAR SOLVER DEFINITION ---------------------------% +% +% Linear solver for implicit formulations (BCGSTAB, FGMRES) +LINEAR_SOLVER= FGMRES +% +% Preconditioner of the Krylov linear solver (JACOBI, LINELET, LU_SGS) +LINEAR_SOLVER_PREC= ILU +% +% Minimum error of the linear solver for implicit formulations +LINEAR_SOLVER_ERROR= 1E-10 +% +% Max number of iterations of the linear solver for the implicit formulation +LINEAR_SOLVER_ITER= 10 + +% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------% +% +% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC, +% TURKEL_PREC, MSW) +CONV_NUM_METHOD_FLOW= AUSM +% +% Monotonic Upwind Scheme for Conservation Laws (TVD) in the flow equations. +% Required for 2nd order upwind schemes (NO, YES) +MUSCL_FLOW= NO +% +% Slope limiter (VENKATAKRISHNAN, MINMOD) +SLOPE_LIMITER_FLOW= VENKATAKRISHNAN +% +% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT) +TIME_DISCRE_FLOW= EULER_EXPLICIT + +% --------------------------- CONVERGENCE PARAMETERS --------------------------% +% +% Convergence criteria (CAUCHY, RESIDUAL) +% +CONV_CRITERIA= RESIDUAL +% +% Min value of the residual (log10 of the residual) +CONV_RESIDUAL_MINVAL= -50 +% +% Start convergence criteria at iteration number +CONV_STARTITER= 10 +% +% Number of elements to apply the criteria +CONV_CAUCHY_ELEMS= 100 +% +% Epsilon to control the series convergence +CONV_CAUCHY_EPS= 1E-6 +% +% Function to apply the criteria (LIFT, DRAG, NEARFIELD_PRESS, SENS_GEOMETRY, +% SENS_MACH, DELTA_LIFT, DELTA_DRAG) +OBJECTIVE_FUNCTION= DRAG +% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% +% +% Mesh input file +MESH_FILENAME= 5x5Mesh.su2 +% +% Mesh input file format (SU2, CGNS, NETCDF_ASCII) +MESH_FORMAT= SU2 +% +% Mesh output file +MESH_OUT_FILENAME= mesh_out.su2 +% +% Restart flow input file +SOLUTION_FILENAME= restart_flow.dat +% +% Restart adjoint input file +SOLUTION_ADJ_FILENAME= solution_adj.dat +% +% Output file format (PARAVIEW, TECPLOT, STL) +TABULAR_FORMAT= TECPLOT +OUTPUT_FILES= (RESTART_ASCII, TECPLOT_ASCII) +% +% Output file convergence history (w/o extension) +CONV_FILENAME= history +% +% Output file restart flow +RESTART_FILENAME= restart_flow.dat +% +% Output file restart adjoint +RESTART_ADJ_FILENAME= restart_adj.dat +% +% Output file flow (w/o extension) variables +VOLUME_FILENAME= test_flow +% +% Output file adjoint (w/o extension) variables +VOLUME_ADJ_FILENAME= adjoint +% +% Output objective function gradient (using continuous adjoint) +GRAD_OBJFUNC_FILENAME= of_grad.dat +% +% Output file surface flow coefficient (w/o extension) +SURFACE_FILENAME= surface_flow +% +% Output file surface adjoint coefficient (w/o extension) +SURFACE_ADJ_FILENAME= surface_adjoint +% +SCREEN_WRT_FREQ_INNER= 10 + +OUTPUT_WRT_FREQ= 10 diff --git a/TestCases/nonequilibrium/thermalbath/frozen/thermalbath_frozen.cfg b/TestCases/nonequilibrium/thermalbath/frozen/thermalbath_frozen.cfg index 193e2c4769c..69fb8531dac 100644 --- a/TestCases/nonequilibrium/thermalbath/frozen/thermalbath_frozen.cfg +++ b/TestCases/nonequilibrium/thermalbath/frozen/thermalbath_frozen.cfg @@ -1,176 +1,175 @@ -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% % -% SU2 configuration file % -% Case description: 2D 5x5 Sqaure Test Case % -% % -% Author: C. Garbacz % -% Institution: Strathclyde University % -% Date: 2019.04.10 % -% File Version 7.0.6 "Falcon" % -% % -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% -% -% Physical governing equations (EULER, NAVIER_STOKES, -% WAVE_EQUATION, HEAT_EQUATION, FEM_ELASTICITY, -% POISSON_EQUATION) -SOLVER= NEMO_EULER -% -GAS_MODEL= N2 -% -GAS_COMPOSITION=(0.666667, 0.333333) -% -% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) -MATH_PROBLEM= DIRECT -% -READ_BINARY_RESTART= NO -% -TIME_MARCHING=TIME_STEPPING -TIME_DOMAIN= YES -TIME_STEP= 0.000000001 % 1.e-09 -MAX_TIME= 0.001 -% -% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE_STREAM DEFINITION ----------% -% -% Mach number (non-dimensional, based on the free-stream values) -MACH_NUMBER= 0.0 -% Angle of attack (degrees) -AOA = 0.0 -% -% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) -FREESTREAM_PRESSURE = 101325.0 -% -% Free-stream temperature (288.15 K by default) -FREESTREAM_TEMPERATURE = 30000 -% -%Free-stream vibrational temperature (288.15 K by default) -FREESTREAM_TEMPERATURE_VE= 1000 -% -% ---- NONEQUILIBRIUM GAS, IDEAL GAS, POLYTROPIC, VAN DER WAALS AND PENG ROBINSON CONSTANTS -------% -% -% Fluid model (STANDARD_AIR, IDEAL_GAS, VW_GAS, PR_GAS, -% CONSTANT_DENSITY, INC_IDEAL_GAS, INC_IDEAL_GAS_POLY, MUTATIONPP, USER_DEFINED_NONEQ) -FLUID_MODEL= USER_DEFINED_NONEQ -% -FROZEN_MIXTURE= YES -% -% -------------------- BOUNDARY CONDITION DEFINITION --------------------------% -% -% Euler wall boundary marker(s) (NONE = no marker) -MARKER_SYM= (left,bottom,top,right ) -% -% Marker(s) of the surface to be plotted or designed -%MARKER_MONITORING= ( bottom ) -% -% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% -% -% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES) -NUM_METHOD_GRAD= WEIGHTED_LEAST_SQUARES -% -% Courant-Friedrichs-Lewy condition of the finest grid -CFL_NUMBER= 1.0 -% -% Number of total iterations -TIME_ITER= 11 -% -% ------------------------ LINEAR SOLVER DEFINITION ---------------------------% -% -% Linear solver for implicit formulations (BCGSTAB, FGMRES) -LINEAR_SOLVER= FGMRES -% -% Preconditioner of the Krylov linear solver (JACOBI, LINELET, LU_SGS) -LINEAR_SOLVER_PREC= ILU -% -% Minimum error of the linear solver for implicit formulations -LINEAR_SOLVER_ERROR= 1E-10 -% -% Max number of iterations of the linear solver for the implicit formulation -LINEAR_SOLVER_ITER= 10 - -% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------% -% -% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC, -% TURKEL_PREC, MSW) -CONV_NUM_METHOD_FLOW= AUSM -% -% Monotonic Upwind Scheme for Conservation Laws (TVD) in the flow equations. -% Required for 2nd order upwind schemes (NO, YES) -MUSCL_FLOW= NO -% -% Slope limiter (VENKATAKRISHNAN, MINMOD) -SLOPE_LIMITER_FLOW= VENKATAKRISHNAN -% -% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT) -TIME_DISCRE_FLOW= EULER_EXPLICIT - -% --------------------------- CONVERGENCE PARAMETERS --------------------------% -% -% Convergence criteria (CAUCHY, RESIDUAL) -% -CONV_CRITERIA= RESIDUAL -% -% Min value of the residual (log10 of the residual) -CONV_RESIDUAL_MINVAL= -50 -% -% Start convergence criteria at iteration number -CONV_STARTITER= 10 -% -% Number of elements to apply the criteria -CONV_CAUCHY_ELEMS= 100 -% -% Epsilon to control the series convergence -CONV_CAUCHY_EPS= 1E-6 -% -% Function to apply the criteria (LIFT, DRAG, NEARFIELD_PRESS, SENS_GEOMETRY, -% SENS_MACH, DELTA_LIFT, DELTA_DRAG) -OBJECTIVE_FUNCTION= DRAG -% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% -% -% Mesh input file -MESH_FILENAME= 5x5Mesh.su2 -% -% Mesh input file format (SU2, CGNS, NETCDF_ASCII) -MESH_FORMAT= SU2 -% -% Mesh output file -MESH_OUT_FILENAME= mesh_out.su2 -% -% Restart flow input file -SOLUTION_FILENAME= restart_flow.dat -% -% Restart adjoint input file -SOLUTION_ADJ_FILENAME= solution_adj.dat -% -% Output file format (PARAVIEW, TECPLOT, STL) -TABULAR_FORMAT= TECPLOT -OUTPUT_FILES= (RESTART_ASCII, TECPLOT_ASCII) -% -% Output file convergence history (w/o extension) -CONV_FILENAME= history -% -% Output file restart flow -RESTART_FILENAME= restart_flow.dat -% -% Output file restart adjoint -RESTART_ADJ_FILENAME= restart_adj.dat -% -% Output file flow (w/o extension) variables -VOLUME_FILENAME= test_flow -% -% Output file adjoint (w/o extension) variables -VOLUME_ADJ_FILENAME= adjoint -% -% Output objective function gradient (using continuous adjoint) -GRAD_OBJFUNC_FILENAME= of_grad.dat -% -% Output file surface flow coefficient (w/o extension) -SURFACE_FILENAME= surface_flow -% -% Output file surface adjoint coefficient (w/o extension) -SURFACE_ADJ_FILENAME= surface_adjoint -% -% Writing convergence history frequency -WRT_CON_FREQ= 10 - -OUTPUT_WRT_FREQ= 10 +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% % +% SU2 configuration file % +% Case description: 2D 5x5 Sqaure Test Case % +% % +% Author: C. Garbacz % +% Institution: Strathclyde University % +% Date: 2019.04.10 % +% File Version 7.0.6 "Falcon" % +% % +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% +% +% Physical governing equations (EULER, NAVIER_STOKES, +% WAVE_EQUATION, HEAT_EQUATION, FEM_ELASTICITY, +% POISSON_EQUATION) +SOLVER= NEMO_EULER +% +GAS_MODEL= N2 +% +GAS_COMPOSITION=(0.666667, 0.333333) +% +% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) +MATH_PROBLEM= DIRECT +% +READ_BINARY_RESTART= NO +% +TIME_MARCHING=TIME_STEPPING +TIME_DOMAIN= YES +TIME_STEP= 0.000000001 % 1.e-09 +MAX_TIME= 0.001 +% +% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE_STREAM DEFINITION ----------% +% +% Mach number (non-dimensional, based on the free-stream values) +MACH_NUMBER= 0.0 +% Angle of attack (degrees) +AOA = 0.0 +% +% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) +FREESTREAM_PRESSURE = 101325.0 +% +% Free-stream temperature (288.15 K by default) +FREESTREAM_TEMPERATURE = 30000 +% +%Free-stream vibrational temperature (288.15 K by default) +FREESTREAM_TEMPERATURE_VE= 1000 +% +% ---- NONEQUILIBRIUM GAS, IDEAL GAS, POLYTROPIC, VAN DER WAALS AND PENG ROBINSON CONSTANTS -------% +% +% Fluid model (STANDARD_AIR, IDEAL_GAS, VW_GAS, PR_GAS, +% CONSTANT_DENSITY, INC_IDEAL_GAS, INC_IDEAL_GAS_POLY, MUTATIONPP, USER_DEFINED_NONEQ) +FLUID_MODEL= USER_DEFINED_NONEQ +% +FROZEN_MIXTURE= YES +% +% -------------------- BOUNDARY CONDITION DEFINITION --------------------------% +% +% Euler wall boundary marker(s) (NONE = no marker) +MARKER_SYM= (left,bottom,top,right ) +% +% Marker(s) of the surface to be plotted or designed +%MARKER_MONITORING= ( bottom ) +% +% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% +% +% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES) +NUM_METHOD_GRAD= WEIGHTED_LEAST_SQUARES +% +% Courant-Friedrichs-Lewy condition of the finest grid +CFL_NUMBER= 1.0 +% +% Number of total iterations +TIME_ITER= 11 +% +% ------------------------ LINEAR SOLVER DEFINITION ---------------------------% +% +% Linear solver for implicit formulations (BCGSTAB, FGMRES) +LINEAR_SOLVER= FGMRES +% +% Preconditioner of the Krylov linear solver (JACOBI, LINELET, LU_SGS) +LINEAR_SOLVER_PREC= ILU +% +% Minimum error of the linear solver for implicit formulations +LINEAR_SOLVER_ERROR= 1E-10 +% +% Max number of iterations of the linear solver for the implicit formulation +LINEAR_SOLVER_ITER= 10 + +% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------% +% +% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC, +% TURKEL_PREC, MSW) +CONV_NUM_METHOD_FLOW= AUSM +% +% Monotonic Upwind Scheme for Conservation Laws (TVD) in the flow equations. +% Required for 2nd order upwind schemes (NO, YES) +MUSCL_FLOW= NO +% +% Slope limiter (VENKATAKRISHNAN, MINMOD) +SLOPE_LIMITER_FLOW= VENKATAKRISHNAN +% +% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT) +TIME_DISCRE_FLOW= EULER_EXPLICIT + +% --------------------------- CONVERGENCE PARAMETERS --------------------------% +% +% Convergence criteria (CAUCHY, RESIDUAL) +% +CONV_CRITERIA= RESIDUAL +% +% Min value of the residual (log10 of the residual) +CONV_RESIDUAL_MINVAL= -50 +% +% Start convergence criteria at iteration number +CONV_STARTITER= 10 +% +% Number of elements to apply the criteria +CONV_CAUCHY_ELEMS= 100 +% +% Epsilon to control the series convergence +CONV_CAUCHY_EPS= 1E-6 +% +% Function to apply the criteria (LIFT, DRAG, NEARFIELD_PRESS, SENS_GEOMETRY, +% SENS_MACH, DELTA_LIFT, DELTA_DRAG) +OBJECTIVE_FUNCTION= DRAG +% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% +% +% Mesh input file +MESH_FILENAME= 5x5Mesh.su2 +% +% Mesh input file format (SU2, CGNS, NETCDF_ASCII) +MESH_FORMAT= SU2 +% +% Mesh output file +MESH_OUT_FILENAME= mesh_out.su2 +% +% Restart flow input file +SOLUTION_FILENAME= restart_flow.dat +% +% Restart adjoint input file +SOLUTION_ADJ_FILENAME= solution_adj.dat +% +% Output file format (PARAVIEW, TECPLOT, STL) +TABULAR_FORMAT= TECPLOT +OUTPUT_FILES= (RESTART_ASCII, TECPLOT_ASCII) +% +% Output file convergence history (w/o extension) +CONV_FILENAME= history +% +% Output file restart flow +RESTART_FILENAME= restart_flow.dat +% +% Output file restart adjoint +RESTART_ADJ_FILENAME= restart_adj.dat +% +% Output file flow (w/o extension) variables +VOLUME_FILENAME= test_flow +% +% Output file adjoint (w/o extension) variables +VOLUME_ADJ_FILENAME= adjoint +% +% Output objective function gradient (using continuous adjoint) +GRAD_OBJFUNC_FILENAME= of_grad.dat +% +% Output file surface flow coefficient (w/o extension) +SURFACE_FILENAME= surface_flow +% +% Output file surface adjoint coefficient (w/o extension) +SURFACE_ADJ_FILENAME= surface_adjoint +% +SCREEN_WRT_FREQ_INNER= 10 + +OUTPUT_WRT_FREQ= 10 diff --git a/TestCases/nonequilibrium/viscwedge/viscwedge.cfg b/TestCases/nonequilibrium/viscwedge/viscwedge.cfg index 1501fa6b75e..d398f92184d 100644 --- a/TestCases/nonequilibrium/viscwedge/viscwedge.cfg +++ b/TestCases/nonequilibrium/viscwedge/viscwedge.cfg @@ -189,8 +189,6 @@ SURFACE_FILENAME= soln_surface % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % -% Writing convergence history frequency -WRT_CON_FREQ= 1 OUTPUT_WRT_FREQ= 100 diff --git a/TestCases/optimization_euler/multiobjective_wedge/inv_wedge_ROE_2surf_1obj.cfg b/TestCases/optimization_euler/multiobjective_wedge/inv_wedge_ROE_2surf_1obj.cfg index 6061b6fbd94..0b1ef6d8417 100644 --- a/TestCases/optimization_euler/multiobjective_wedge/inv_wedge_ROE_2surf_1obj.cfg +++ b/TestCases/optimization_euler/multiobjective_wedge/inv_wedge_ROE_2surf_1obj.cfg @@ -272,8 +272,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Read binary restart files READ_BINARY_RESTART = NO diff --git a/TestCases/optimization_euler/multiobjective_wedge/inv_wedge_ROE_multiobj.cfg b/TestCases/optimization_euler/multiobjective_wedge/inv_wedge_ROE_multiobj.cfg index 5124690c1a5..a8b72cb6783 100644 --- a/TestCases/optimization_euler/multiobjective_wedge/inv_wedge_ROE_multiobj.cfg +++ b/TestCases/optimization_euler/multiobjective_wedge/inv_wedge_ROE_multiobj.cfg @@ -273,8 +273,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Read binary restart files READ_BINARY_RESTART = NO diff --git a/TestCases/optimization_euler/multiobjective_wedge/inv_wedge_ROE_multiobj_1surf.cfg b/TestCases/optimization_euler/multiobjective_wedge/inv_wedge_ROE_multiobj_1surf.cfg index 346d931baf5..a533efab289 100644 --- a/TestCases/optimization_euler/multiobjective_wedge/inv_wedge_ROE_multiobj_1surf.cfg +++ b/TestCases/optimization_euler/multiobjective_wedge/inv_wedge_ROE_multiobj_1surf.cfg @@ -273,8 +273,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Read binary restart files READ_BINARY_RESTART = NO diff --git a/TestCases/optimization_euler/multiobjective_wedge/inv_wedge_ROE_multiobj_combo.cfg b/TestCases/optimization_euler/multiobjective_wedge/inv_wedge_ROE_multiobj_combo.cfg index 641f9fb87bd..b4a9f3638e8 100644 --- a/TestCases/optimization_euler/multiobjective_wedge/inv_wedge_ROE_multiobj_combo.cfg +++ b/TestCases/optimization_euler/multiobjective_wedge/inv_wedge_ROE_multiobj_combo.cfg @@ -275,8 +275,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Read binary restart files READ_BINARY_RESTART = NO diff --git a/TestCases/optimization_euler/multipoint_naca0012/inv_NACA0012_multipoint.cfg b/TestCases/optimization_euler/multipoint_naca0012/inv_NACA0012_multipoint.cfg index a60dad83fd6..84eebac0ea4 100644 --- a/TestCases/optimization_euler/multipoint_naca0012/inv_NACA0012_multipoint.cfg +++ b/TestCases/optimization_euler/multipoint_naca0012/inv_NACA0012_multipoint.cfg @@ -278,8 +278,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % --------------------- OPTIMAL SHAPE DESIGN DEFINITION -----------------------% % diff --git a/TestCases/optimization_euler/pitching_naca64a010/pitching_NACA64A010.cfg b/TestCases/optimization_euler/pitching_naca64a010/pitching_NACA64A010.cfg index 8ec96b6914f..fa2c8d0ba7f 100644 --- a/TestCases/optimization_euler/pitching_naca64a010/pitching_NACA64A010.cfg +++ b/TestCases/optimization_euler/pitching_naca64a010/pitching_NACA64A010.cfg @@ -328,8 +328,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 1 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % --------------------- OPTIMAL SHAPE DESIGN DEFINITION -----------------------% % diff --git a/TestCases/optimization_euler/pitching_oneram6/pitching_ONERAM6.cfg b/TestCases/optimization_euler/pitching_oneram6/pitching_ONERAM6.cfg index a3be3568eec..f8b2fed7036 100644 --- a/TestCases/optimization_euler/pitching_oneram6/pitching_ONERAM6.cfg +++ b/TestCases/optimization_euler/pitching_oneram6/pitching_ONERAM6.cfg @@ -313,8 +313,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution frequency OUTPUT_WRT_FREQ= 1 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % ----------------------- DESIGN VARIABLE PARAMETERS --------------------------% % diff --git a/TestCases/optimization_euler/rotating_naca0012/rotating_NACA0012.cfg b/TestCases/optimization_euler/rotating_naca0012/rotating_NACA0012.cfg index 61de6c31580..57e718a4248 100644 --- a/TestCases/optimization_euler/rotating_naca0012/rotating_NACA0012.cfg +++ b/TestCases/optimization_euler/rotating_naca0012/rotating_NACA0012.cfg @@ -297,8 +297,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % --------------------- OPTIMAL SHAPE DESIGN DEFINITION -----------------------% % diff --git a/TestCases/optimization_euler/steady_inverse_design/inv_NACA0012.cfg b/TestCases/optimization_euler/steady_inverse_design/inv_NACA0012.cfg index 543d47a0852..47c4186c9a0 100644 --- a/TestCases/optimization_euler/steady_inverse_design/inv_NACA0012.cfg +++ b/TestCases/optimization_euler/steady_inverse_design/inv_NACA0012.cfg @@ -287,8 +287,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % --------------------- OPTIMAL SHAPE DESIGN DEFINITION -----------------------% % diff --git a/TestCases/optimization_euler/steady_naca0012/inv_NACA0012_adv.cfg b/TestCases/optimization_euler/steady_naca0012/inv_NACA0012_adv.cfg index eec7d2d0985..2c5672b7d92 100644 --- a/TestCases/optimization_euler/steady_naca0012/inv_NACA0012_adv.cfg +++ b/TestCases/optimization_euler/steady_naca0012/inv_NACA0012_adv.cfg @@ -299,8 +299,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 50 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % History output HISTORY_OUTPUT= (ITER, RMS_RES, AERO_COEFF) diff --git a/TestCases/optimization_euler/steady_naca0012/inv_NACA0012_basic.cfg b/TestCases/optimization_euler/steady_naca0012/inv_NACA0012_basic.cfg index a95d8daf93b..7c78a1bba0f 100644 --- a/TestCases/optimization_euler/steady_naca0012/inv_NACA0012_basic.cfg +++ b/TestCases/optimization_euler/steady_naca0012/inv_NACA0012_basic.cfg @@ -287,8 +287,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % --------------------- OPTIMAL SHAPE DESIGN DEFINITION -----------------------% % diff --git a/TestCases/optimization_euler/steady_oneram6/inv_ONERAM6_adv.cfg b/TestCases/optimization_euler/steady_oneram6/inv_ONERAM6_adv.cfg index 7ea563c469e..0d8f431a9a6 100644 --- a/TestCases/optimization_euler/steady_oneram6/inv_ONERAM6_adv.cfg +++ b/TestCases/optimization_euler/steady_oneram6/inv_ONERAM6_adv.cfg @@ -271,8 +271,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency for physical time steps (dual time) OUTPUT_WRT_FREQ= 1 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % OUTPUT_FILES=(RESTART, PARAVIEW, SURFACE_CSV) diff --git a/TestCases/optimization_euler/steady_oneram6/inv_ONERAM6_basic.cfg b/TestCases/optimization_euler/steady_oneram6/inv_ONERAM6_basic.cfg index cfb45d19f2a..b0f64ef8e8d 100644 --- a/TestCases/optimization_euler/steady_oneram6/inv_ONERAM6_basic.cfg +++ b/TestCases/optimization_euler/steady_oneram6/inv_ONERAM6_basic.cfg @@ -271,8 +271,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency for physical time steps (dual time) OUTPUT_WRT_FREQ= 1 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % -------------------- FREE-FORM DEFORMATION PARAMETERS -----------------------% % diff --git a/TestCases/optimization_rans/naca0012/naca0012.cfg b/TestCases/optimization_rans/naca0012/naca0012.cfg index e4ccdc8dd45..07309c7ab9a 100644 --- a/TestCases/optimization_rans/naca0012/naca0012.cfg +++ b/TestCases/optimization_rans/naca0012/naca0012.cfg @@ -170,7 +170,6 @@ VOLUME_FILENAME= flow SURFACE_FILENAME= surface_flow % Writing solution file frequency OUTPUT_WRT_FREQ= 1 -WRT_CON_FREQ= 1 % % ----------------------- DESIGN VARIABLE PARAMETERS --------------------------% % diff --git a/TestCases/optimization_rans/pitching_naca64a010/turb_NACA64A010.cfg b/TestCases/optimization_rans/pitching_naca64a010/turb_NACA64A010.cfg index 055f720bbf4..47e0e3bee6f 100644 --- a/TestCases/optimization_rans/pitching_naca64a010/turb_NACA64A010.cfg +++ b/TestCases/optimization_rans/pitching_naca64a010/turb_NACA64A010.cfg @@ -344,8 +344,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency for physical time steps (dual time) OUTPUT_WRT_FREQ= 1 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % --------------------- OPTIMAL SHAPE DESIGN DEFINITION -----------------------% % diff --git a/TestCases/optimization_rans/pitching_oneram6/turb_ONERAM6.cfg b/TestCases/optimization_rans/pitching_oneram6/turb_ONERAM6.cfg index d47e4236fe8..99b169d3343 100644 --- a/TestCases/optimization_rans/pitching_oneram6/turb_ONERAM6.cfg +++ b/TestCases/optimization_rans/pitching_oneram6/turb_ONERAM6.cfg @@ -367,8 +367,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 1 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % --------------------- OPTIMAL SHAPE DESIGN DEFINITION -----------------------% % diff --git a/TestCases/optimization_rans/steady_oneram6/turb_ONERAM6.cfg b/TestCases/optimization_rans/steady_oneram6/turb_ONERAM6.cfg index 01f038cdd10..e8eaebd240c 100644 --- a/TestCases/optimization_rans/steady_oneram6/turb_ONERAM6.cfg +++ b/TestCases/optimization_rans/steady_oneram6/turb_ONERAM6.cfg @@ -314,8 +314,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 1000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % --------------------- OPTIMAL SHAPE DESIGN DEFINITION -----------------------% % diff --git a/TestCases/optimization_rans/steady_rae2822/turb_SA_RAE2822.cfg b/TestCases/optimization_rans/steady_rae2822/turb_SA_RAE2822.cfg index 169f061bdc2..80768e05b03 100644 --- a/TestCases/optimization_rans/steady_rae2822/turb_SA_RAE2822.cfg +++ b/TestCases/optimization_rans/steady_rae2822/turb_SA_RAE2822.cfg @@ -265,8 +265,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 10000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % ------------------------ GRID DEFORMATION PARAMETERS ------------------------% % diff --git a/TestCases/polar/naca0012/inv_NACA0012.cfg b/TestCases/polar/naca0012/inv_NACA0012.cfg index 5477157edd6..51f92306f18 100644 --- a/TestCases/polar/naca0012/inv_NACA0012.cfg +++ b/TestCases/polar/naca0012/inv_NACA0012.cfg @@ -302,8 +302,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) diff --git a/TestCases/py_wrapper/disc_adj_fea/flow_load_sens/configAD_fem.cfg b/TestCases/py_wrapper/disc_adj_fea/flow_load_sens/configAD_fem.cfg index 7928d230623..63edf6869cf 100644 --- a/TestCases/py_wrapper/disc_adj_fea/flow_load_sens/configAD_fem.cfg +++ b/TestCases/py_wrapper/disc_adj_fea/flow_load_sens/configAD_fem.cfg @@ -54,7 +54,6 @@ RESTART_ADJ_FILENAME= restart_adj.dat MESH_FORMAT= SU2 TABULAR_FORMAT= CSV -WRT_CON_FREQ= 1 OUTPUT_WRT_FREQ= 1 LINEAR_SOLVER= CONJUGATE_GRADIENT diff --git a/TestCases/py_wrapper/disc_adj_flow/mesh_disp_sens/configAD_flow.cfg b/TestCases/py_wrapper/disc_adj_flow/mesh_disp_sens/configAD_flow.cfg index ed7b0f74040..af96cf4e0fa 100644 --- a/TestCases/py_wrapper/disc_adj_flow/mesh_disp_sens/configAD_flow.cfg +++ b/TestCases/py_wrapper/disc_adj_flow/mesh_disp_sens/configAD_flow.cfg @@ -146,7 +146,6 @@ SURFACE_FILENAME= surface_flow OUTPUT_WRT_FREQ= 1000 -WRT_CON_FREQ= 1 % --------------------------- MESH PARAMETERS ---------------------------------% diff --git a/TestCases/py_wrapper/flatPlate_rigidMotion/flatPlate_rigidMotion_Conf.cfg b/TestCases/py_wrapper/flatPlate_rigidMotion/flatPlate_rigidMotion_Conf.cfg index 23e55ba2a5b..113b0c0f3b1 100644 --- a/TestCases/py_wrapper/flatPlate_rigidMotion/flatPlate_rigidMotion_Conf.cfg +++ b/TestCases/py_wrapper/flatPlate_rigidMotion/flatPlate_rigidMotion_Conf.cfg @@ -518,8 +518,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency for physical time steps (dual time) OUTPUT_WRT_FREQ= 3 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Read binary restart files (YES, NO) READ_BINARY_RESTART= YES diff --git a/TestCases/py_wrapper/flatPlate_unsteady_CHT/unsteady_CHT_FlatPlate_Conf.cfg b/TestCases/py_wrapper/flatPlate_unsteady_CHT/unsteady_CHT_FlatPlate_Conf.cfg index f0a05148def..df0070bc233 100644 --- a/TestCases/py_wrapper/flatPlate_unsteady_CHT/unsteady_CHT_FlatPlate_Conf.cfg +++ b/TestCases/py_wrapper/flatPlate_unsteady_CHT/unsteady_CHT_FlatPlate_Conf.cfg @@ -499,8 +499,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency for physical time steps (dual time) OUTPUT_WRT_FREQ= 3 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Read binary restart files (YES, NO) READ_BINARY_RESTART= YES diff --git a/TestCases/rans/actuatordisk_variable_load/propeller_variable_load.cfg b/TestCases/rans/actuatordisk_variable_load/propeller_variable_load.cfg index d4c9cdbef61..654aacad954 100644 --- a/TestCases/rans/actuatordisk_variable_load/propeller_variable_load.cfg +++ b/TestCases/rans/actuatordisk_variable_load/propeller_variable_load.cfg @@ -1,239 +1,237 @@ -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% % -% SU2 configuration file % -% Case description: Actuator Disk with a semi-infinite spinner % -% Author: E. Saetta, L. Russo, R. Tognaccini % -% Institution: Theoretical and Applied Aerodynamic Research Group (TAARG) % -% University of Naples Federico II % -% Comments: Grid file and propeller data courtesy of Mauro Minervino, % -% Centro Italiano Ricerche Aerospaziali (CIRA) % -% Date: 07/08/2020 % -% File Version 7.0.8 "Blackbird" % -% % -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -%----------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION -------------------------% -% Solver type (EULER, NAVIER_STOKES, RANS, -% INC_EULER, INC_NAVIER_STOKES, INC_RANS -% FEM_EULER, FEM_NAVIER_STOKES, FEM_RANS, FEM_LES, -% HEAT_EQUATION_FVM, ELASTICITY) -SOLVER= RANS -% -% Specify turbulence model (NONE, SA, SA_NEG, SST, SA_E, SA_COMP, SA_E_COMP, SST_SUST) -KIND_TURB_MODEL= SA -% -% Turbulence intensity at freestream -FREESTREAM_TURBULENCEINTENSITY=0.01 -% -% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT, DISCRETE_ADJOINT) -MATH_PROBLEM= DIRECT -% -% Restart solution (NO, YES) -RESTART_SOL= NO -% -% System of measurements (SI, US) -% International system of units (SI): ( meters, kilograms, Kelvins, -% Newtons = kg m/s^2, Pascals = N/m^2, -% Density = kg/m^3, Speed = m/s, -% Equiv. Area = m^2 ) -SYSTEM_MEASUREMENTS= SI -% -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------% -% Mach number (non-dimensional, based on the free-stream values) -MACH_NUMBER= 0.55996 -% -% Angle of attack (degrees, only for compressible flows) -AOA= 0.0 -% -% Side-slip angle (degrees, only for compressible flows) -SIDESLIP_ANGLE= 0.0 -% -% Reynolds number (non-dimensional, based on the free-stream values) -REYNOLDS_NUMBER= 3.65E7 -% -% Reynolds length (1 m, 1 inch by default) -REYNOLDS_LENGTH= 5.0292 -% -% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% -% Reference origin for moment computation (m or in) -REF_ORIGIN_MOMENT_X = 0.0 -REF_ORIGIN_MOMENT_Y = 0.0 -REF_ORIGIN_MOMENT_Z = 0.0 -% -% Reference length for moment non-dimensional coefficients (m or in) -REF_LENGTH= 1.0 -% -% Reference area for non-dimensional force coefficients (0 implies automatic -% calculation) (m^2 or in^2) -REF_AREA= 19.8649 -% -% Compressible flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, -% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) -REF_DIMENSIONALIZATION= DIMENSIONAL -% -% --------------- ENGINE AND ACTUATOR DISK SIMULATION -------------------------% -% Highlite area to compute MFR (1 in by default) -HIGHLITE_AREA= 19.8649 -% -% Engine nu factor (SA model). -ENGINE_NU_FACTOR= 0.0 -% -% -------------------- BOUNDARY CONDITION DEFINITION --------------------------% -ACTDISK_DOUBLE_SURFACE = YES -% -% Actuator disk boundary type (VARIABLE_LOAD, VARIABLES_JUMP, BC_THRUST, -% DRAG_MINUS_THRUST) -ACTDISK_TYPE= VARIABLE_LOAD -% -% Actuator disk data input file name -ACTDISK_FILENAME= ActuatorDisk.dat -% -% Actuator disk boundary marker(s) with the following formats (NONE = no marker) -% Variable Load: (inlet face marker, outlet face marker, -% 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) Markers only effectively used. -MARKER_ACTDISK = ( DISK, DISK_BACK, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ) -% -% Far-field boundary marker(s) (NONE = no marker) -MARKER_FAR= ( FF ) -% -% Outlet boundary marker(s) (NONE = no marker) -% Compressible: ( outlet marker, back pressure (static thermodynamic), ... ) -MARKER_OUTLET = ( OUT , 56370.2) -% -% Navier-Stokes (no-slip), constant heat flux wall marker(s) (NONE = no marker) -% Format: ( marker name, constant heat flux (J/m^2), ... ) -MARKER_HEATFLUX = (SPINNER, 0.0) -% -% ------------------------ SURFACES IDENTIFICATION ----------------------------% -% Marker(s) of the surface in the surface flow solution file -MARKER_PLOTTING = ( DISK, DISK_BACK, SPINNER ) -% -% Marker(s) of the surface where the non-dimensional coefficients are evaluated. -MARKER_MONITORING = ( DISK, DISK_BACK, SPINNER ) -% -% Marker(s) of the surface that is going to be analyzed in detail (massflow, average pressure, distortion, etc) -MARKER_ANALYZE = ( DISK, DISK_BACK ) -% -% Method to compute the average value in MARKER_ANALYZE (AREA, MASSFLUX). -MARKER_ANALYZE_AVERAGE = MASSFLUX -% -% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% -% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES) -NUM_METHOD_GRAD= GREEN_GAUSS -% -% CFL number (initial value for the adaptive CFL number) -CFL_NUMBER= 20.0 -% -% Adaptive CFL number (NO, YES) -CFL_ADAPT= NO -% -% Objective function in gradient evaluation (DRAG, LIFT, SIDEFORCE, MOMENT_X, -% MOMENT_Y, MOMENT_Z, EFFICIENCY, BUFFET, -% EQUIVALENT_AREA, NEARFIELD_PRESSURE, -% FORCE_X, FORCE_Y, FORCE_Z, THRUST, -% TORQUE, TOTAL_HEATFLUX, -% MAXIMUM_HEATFLUX, INVERSE_DESIGN_PRESSURE, -% INVERSE_DESIGN_HEATFLUX, SURFACE_TOTAL_PRESSURE, -% SURFACE_MASSFLOW, SURFACE_STATIC_PRESSURE, SURFACE_MACH) -% For a weighted sum of objectives: separate by commas, add OBJECTIVE_WEIGHT and MARKER_MONITORING in matching order. -OBJECTIVE_FUNCTION= DRAG -% -% ------------------------ LINEAR SOLVER DEFINITION ---------------------------% -% Linear solver or smoother for implicit formulations: -% BCGSTAB, FGMRES, RESTARTED_FGMRES, CONJUGATE_GRADIENT (self-adjoint problems only), SMOOTHER. -LINEAR_SOLVER= FGMRES -% -% Preconditioner of the Krylov linear solver or type of smoother (ILU, LU_SGS, LINELET, JACOBI) -LINEAR_SOLVER_PREC= ILU -% -% Minimum error of the linear solver for implicit formulations -LINEAR_SOLVER_ERROR= 1E-12 -% -% Max number of iterations of the linear solver for the implicit formulation -LINEAR_SOLVER_ITER= 3 -% -% Number of elements to apply the criteria -CONV_CAUCHY_ELEMS= 1000 -% -% Epsilon to control the series convergence -CONV_CAUCHY_EPS= 1E-10 -% -% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------% -% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, AUSMPLUSUP, -% AUSMPLUSUP2, HLLC, TURKEL_PREC, MSW, FDS, SLAU, SLAU2) -CONV_NUM_METHOD_FLOW= JST -% -% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT) -TIME_DISCRE_FLOW= EULER_IMPLICIT -% -% -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------% -% Convective numerical method (SCALAR_UPWIND) -CONV_NUM_METHOD_TURB= SCALAR_UPWIND -% -% Monotonic Upwind Scheme for Conservation Laws (TVD) in the turbulence equations. -% Required for 2nd order upwind schemes (NO, YES) -MUSCL_TURB= NO -% -% Slope limiter (NONE, VENKATAKRISHNAN, VENKATAKRISHNAN_WANG, -% BARTH_JESPERSEN, VAN_ALBADA_EDGE) -SLOPE_LIMITER_TURB= VENKATAKRISHNAN -% -% Time discretization (EULER_IMPLICIT) -TIME_DISCRE_TURB= EULER_IMPLICIT -% -% --------------------------- CONVERGENCE PARAMETERS --------------------------% -% Maximum number of iterations -ITER= 1500 -% -% Convergence criteria (CAUCHY, RESIDUAL) -CONV_CRITERIA= RESIDUAL -% -% Min value of the residual (log10 of the residual) -CONV_RESIDUAL_MINVAL= -8 -% -% Start convergence criteria at iteration number -CONV_STARTITER= 10 -% -% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% -% Mesh input file -MESH_FILENAME= propeller_variable_load.su2 -% -% Mesh input file format (SU2, CGNS) -MESH_FORMAT= SU2 -% -% Mesh output file -MESH_OUT_FILENAME= mesh_out.su2 -% -% Restart flow input file -SOLUTION_FILENAME= restart_flow.dat -% -% Output tabular file format (TECPLOT, CSV) -TABULAR_FORMAT= TECPLOT -% -% Output file convergence history (w/o extension) -CONV_FILENAME= history -% -% Write the forces breakdown file option (NO, YES) -WRT_FORCES_BREAKDOWN= YES -% -% Output file with the forces breakdown -BREAKDOWN_FILENAME= forces_breakdown.dat -% -% Output file restart flow -RESTART_FILENAME= restart_flow.dat -% -% Output file flow (w/o extension) variables -VOLUME_FILENAME= flow -% -% Output file surface flow coefficient (w/o extension) -SURFACE_FILENAME= surface_flow -% -% Writing solution file frequency -OUTPUT_WRT_FREQ= 250 -% -% Writing convergence history frequency -WRT_CON_FREQ= 1 -% -% -% -% Screen output fields -SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_NU_TILDE, LIFT, DRAG) +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% % +% SU2 configuration file % +% Case description: Actuator Disk with a semi-infinite spinner % +% Author: E. Saetta, L. Russo, R. Tognaccini % +% Institution: Theoretical and Applied Aerodynamic Research Group (TAARG) % +% University of Naples Federico II % +% Comments: Grid file and propeller data courtesy of Mauro Minervino, % +% Centro Italiano Ricerche Aerospaziali (CIRA) % +% Date: 07/08/2020 % +% File Version 7.0.8 "Blackbird" % +% % +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +%----------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION -------------------------% +% Solver type (EULER, NAVIER_STOKES, RANS, +% INC_EULER, INC_NAVIER_STOKES, INC_RANS +% FEM_EULER, FEM_NAVIER_STOKES, FEM_RANS, FEM_LES, +% HEAT_EQUATION_FVM, ELASTICITY) +SOLVER= RANS +% +% Specify turbulence model (NONE, SA, SA_NEG, SST, SA_E, SA_COMP, SA_E_COMP, SST_SUST) +KIND_TURB_MODEL= SA +% +% Turbulence intensity at freestream +FREESTREAM_TURBULENCEINTENSITY=0.01 +% +% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT, DISCRETE_ADJOINT) +MATH_PROBLEM= DIRECT +% +% Restart solution (NO, YES) +RESTART_SOL= NO +% +% System of measurements (SI, US) +% International system of units (SI): ( meters, kilograms, Kelvins, +% Newtons = kg m/s^2, Pascals = N/m^2, +% Density = kg/m^3, Speed = m/s, +% Equiv. Area = m^2 ) +SYSTEM_MEASUREMENTS= SI +% -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------% +% Mach number (non-dimensional, based on the free-stream values) +MACH_NUMBER= 0.55996 +% +% Angle of attack (degrees, only for compressible flows) +AOA= 0.0 +% +% Side-slip angle (degrees, only for compressible flows) +SIDESLIP_ANGLE= 0.0 +% +% Reynolds number (non-dimensional, based on the free-stream values) +REYNOLDS_NUMBER= 3.65E7 +% +% Reynolds length (1 m, 1 inch by default) +REYNOLDS_LENGTH= 5.0292 +% +% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% +% Reference origin for moment computation (m or in) +REF_ORIGIN_MOMENT_X = 0.0 +REF_ORIGIN_MOMENT_Y = 0.0 +REF_ORIGIN_MOMENT_Z = 0.0 +% +% Reference length for moment non-dimensional coefficients (m or in) +REF_LENGTH= 1.0 +% +% Reference area for non-dimensional force coefficients (0 implies automatic +% calculation) (m^2 or in^2) +REF_AREA= 19.8649 +% +% Compressible flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, +% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) +REF_DIMENSIONALIZATION= DIMENSIONAL +% +% --------------- ENGINE AND ACTUATOR DISK SIMULATION -------------------------% +% Highlite area to compute MFR (1 in by default) +HIGHLITE_AREA= 19.8649 +% +% Engine nu factor (SA model). +ENGINE_NU_FACTOR= 0.0 +% +% -------------------- BOUNDARY CONDITION DEFINITION --------------------------% +ACTDISK_DOUBLE_SURFACE = YES +% +% Actuator disk boundary type (VARIABLE_LOAD, VARIABLES_JUMP, BC_THRUST, +% DRAG_MINUS_THRUST) +ACTDISK_TYPE= VARIABLE_LOAD +% +% Actuator disk data input file name +ACTDISK_FILENAME= ActuatorDisk.dat +% +% Actuator disk boundary marker(s) with the following formats (NONE = no marker) +% Variable Load: (inlet face marker, outlet face marker, +% 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) Markers only effectively used. +MARKER_ACTDISK = ( DISK, DISK_BACK, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ) +% +% Far-field boundary marker(s) (NONE = no marker) +MARKER_FAR= ( FF ) +% +% Outlet boundary marker(s) (NONE = no marker) +% Compressible: ( outlet marker, back pressure (static thermodynamic), ... ) +MARKER_OUTLET = ( OUT , 56370.2) +% +% Navier-Stokes (no-slip), constant heat flux wall marker(s) (NONE = no marker) +% Format: ( marker name, constant heat flux (J/m^2), ... ) +MARKER_HEATFLUX = (SPINNER, 0.0) +% +% ------------------------ SURFACES IDENTIFICATION ----------------------------% +% Marker(s) of the surface in the surface flow solution file +MARKER_PLOTTING = ( DISK, DISK_BACK, SPINNER ) +% +% Marker(s) of the surface where the non-dimensional coefficients are evaluated. +MARKER_MONITORING = ( DISK, DISK_BACK, SPINNER ) +% +% Marker(s) of the surface that is going to be analyzed in detail (massflow, average pressure, distortion, etc) +MARKER_ANALYZE = ( DISK, DISK_BACK ) +% +% Method to compute the average value in MARKER_ANALYZE (AREA, MASSFLUX). +MARKER_ANALYZE_AVERAGE = MASSFLUX +% +% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% +% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES) +NUM_METHOD_GRAD= GREEN_GAUSS +% +% CFL number (initial value for the adaptive CFL number) +CFL_NUMBER= 20.0 +% +% Adaptive CFL number (NO, YES) +CFL_ADAPT= NO +% +% Objective function in gradient evaluation (DRAG, LIFT, SIDEFORCE, MOMENT_X, +% MOMENT_Y, MOMENT_Z, EFFICIENCY, BUFFET, +% EQUIVALENT_AREA, NEARFIELD_PRESSURE, +% FORCE_X, FORCE_Y, FORCE_Z, THRUST, +% TORQUE, TOTAL_HEATFLUX, +% MAXIMUM_HEATFLUX, INVERSE_DESIGN_PRESSURE, +% INVERSE_DESIGN_HEATFLUX, SURFACE_TOTAL_PRESSURE, +% SURFACE_MASSFLOW, SURFACE_STATIC_PRESSURE, SURFACE_MACH) +% For a weighted sum of objectives: separate by commas, add OBJECTIVE_WEIGHT and MARKER_MONITORING in matching order. +OBJECTIVE_FUNCTION= DRAG +% +% ------------------------ LINEAR SOLVER DEFINITION ---------------------------% +% Linear solver or smoother for implicit formulations: +% BCGSTAB, FGMRES, RESTARTED_FGMRES, CONJUGATE_GRADIENT (self-adjoint problems only), SMOOTHER. +LINEAR_SOLVER= FGMRES +% +% Preconditioner of the Krylov linear solver or type of smoother (ILU, LU_SGS, LINELET, JACOBI) +LINEAR_SOLVER_PREC= ILU +% +% Minimum error of the linear solver for implicit formulations +LINEAR_SOLVER_ERROR= 1E-12 +% +% Max number of iterations of the linear solver for the implicit formulation +LINEAR_SOLVER_ITER= 3 +% +% Number of elements to apply the criteria +CONV_CAUCHY_ELEMS= 1000 +% +% Epsilon to control the series convergence +CONV_CAUCHY_EPS= 1E-10 +% +% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------% +% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, AUSMPLUSUP, +% AUSMPLUSUP2, HLLC, TURKEL_PREC, MSW, FDS, SLAU, SLAU2) +CONV_NUM_METHOD_FLOW= JST +% +% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT) +TIME_DISCRE_FLOW= EULER_IMPLICIT +% +% -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------% +% Convective numerical method (SCALAR_UPWIND) +CONV_NUM_METHOD_TURB= SCALAR_UPWIND +% +% Monotonic Upwind Scheme for Conservation Laws (TVD) in the turbulence equations. +% Required for 2nd order upwind schemes (NO, YES) +MUSCL_TURB= NO +% +% Slope limiter (NONE, VENKATAKRISHNAN, VENKATAKRISHNAN_WANG, +% BARTH_JESPERSEN, VAN_ALBADA_EDGE) +SLOPE_LIMITER_TURB= VENKATAKRISHNAN +% +% Time discretization (EULER_IMPLICIT) +TIME_DISCRE_TURB= EULER_IMPLICIT +% +% --------------------------- CONVERGENCE PARAMETERS --------------------------% +% Maximum number of iterations +ITER= 1500 +% +% Convergence criteria (CAUCHY, RESIDUAL) +CONV_CRITERIA= RESIDUAL +% +% Min value of the residual (log10 of the residual) +CONV_RESIDUAL_MINVAL= -8 +% +% Start convergence criteria at iteration number +CONV_STARTITER= 10 +% +% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% +% Mesh input file +MESH_FILENAME= propeller_variable_load.su2 +% +% Mesh input file format (SU2, CGNS) +MESH_FORMAT= SU2 +% +% Mesh output file +MESH_OUT_FILENAME= mesh_out.su2 +% +% Restart flow input file +SOLUTION_FILENAME= restart_flow.dat +% +% Output tabular file format (TECPLOT, CSV) +TABULAR_FORMAT= TECPLOT +% +% Output file convergence history (w/o extension) +CONV_FILENAME= history +% +% Write the forces breakdown file option (NO, YES) +WRT_FORCES_BREAKDOWN= YES +% +% Output file with the forces breakdown +BREAKDOWN_FILENAME= forces_breakdown.dat +% +% Output file restart flow +RESTART_FILENAME= restart_flow.dat +% +% Output file flow (w/o extension) variables +VOLUME_FILENAME= flow +% +% Output file surface flow coefficient (w/o extension) +SURFACE_FILENAME= surface_flow +% +% Writing solution file frequency +OUTPUT_WRT_FREQ= 250 +% +% +% +% +% Screen output fields +SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_NU_TILDE, LIFT, DRAG) diff --git a/TestCases/rans/flatplate/turb_SA_flatplate.cfg b/TestCases/rans/flatplate/turb_SA_flatplate.cfg index d43d5044c64..dc0e29afeca 100644 --- a/TestCases/rans/flatplate/turb_SA_flatplate.cfg +++ b/TestCases/rans/flatplate/turb_SA_flatplate.cfg @@ -242,8 +242,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 1000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output fields SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_NU_TILDE, LIFT, DRAG) diff --git a/TestCases/rans/flatplate/turb_SST_flatplate.cfg b/TestCases/rans/flatplate/turb_SST_flatplate.cfg index 55c9bc1c1a5..424eaaefdd5 100644 --- a/TestCases/rans/flatplate/turb_SST_flatplate.cfg +++ b/TestCases/rans/flatplate/turb_SST_flatplate.cfg @@ -241,5 +241,3 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 1000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/rans/naca0012/turb_NACA0012_sa.cfg b/TestCases/rans/naca0012/turb_NACA0012_sa.cfg index 31d001a9e88..fa91f63fa82 100644 --- a/TestCases/rans/naca0012/turb_NACA0012_sa.cfg +++ b/TestCases/rans/naca0012/turb_NACA0012_sa.cfg @@ -242,8 +242,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 10000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output fields SCREEN_OUTPUT=(INNER_ITER, RMS_DENSITY, RMS_NU_TILDE, LIFT, DRAG) diff --git a/TestCases/rans/naca0012/turb_NACA0012_sa_binary.cfg b/TestCases/rans/naca0012/turb_NACA0012_sa_binary.cfg index 53c55dcdd6f..3838a627d48 100644 --- a/TestCases/rans/naca0012/turb_NACA0012_sa_binary.cfg +++ b/TestCases/rans/naca0012/turb_NACA0012_sa_binary.cfg @@ -251,8 +251,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 10000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output fields SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_NU_TILDE, LIFT, DRAG) diff --git a/TestCases/rans/naca0012/turb_NACA0012_sa_neg.cfg b/TestCases/rans/naca0012/turb_NACA0012_sa_neg.cfg index 040e374c5c0..104b4fb3618 100644 --- a/TestCases/rans/naca0012/turb_NACA0012_sa_neg.cfg +++ b/TestCases/rans/naca0012/turb_NACA0012_sa_neg.cfg @@ -242,5 +242,3 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 10000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/rans/naca0012/turb_NACA0012_sst.cfg b/TestCases/rans/naca0012/turb_NACA0012_sst.cfg index 9e79e9f82cf..9dfd5c24ec9 100644 --- a/TestCases/rans/naca0012/turb_NACA0012_sst.cfg +++ b/TestCases/rans/naca0012/turb_NACA0012_sst.cfg @@ -245,8 +245,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 10000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output fields SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_TKE, RMS_DISSIPATION, LIFT, DRAG) diff --git a/TestCases/rans/naca0012/turb_NACA0012_sst_multigrid_restart.cfg b/TestCases/rans/naca0012/turb_NACA0012_sst_multigrid_restart.cfg index 6c5e2d16c79..ce2e1b2f6d0 100644 --- a/TestCases/rans/naca0012/turb_NACA0012_sst_multigrid_restart.cfg +++ b/TestCases/rans/naca0012/turb_NACA0012_sst_multigrid_restart.cfg @@ -391,8 +391,6 @@ OUTPUT_WRT_FREQ= 500 % Uses two restart files and switches between them when writting restarts %WRT_FLIPFLOP_RESTART = YES % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output fields SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_TKE, RMS_DISSIPATION, LIFT, DRAG) diff --git a/TestCases/rans/naca0012/turb_NACA0012_sst_sust.cfg b/TestCases/rans/naca0012/turb_NACA0012_sst_sust.cfg index 114d1ca1ffc..92750082434 100644 --- a/TestCases/rans/naca0012/turb_NACA0012_sst_sust.cfg +++ b/TestCases/rans/naca0012/turb_NACA0012_sst_sust.cfg @@ -251,8 +251,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 10000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output fields SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_TKE, RMS_DISSIPATION, LIFT, DRAG) diff --git a/TestCases/rans/oneram6/turb_ONERAM6.cfg b/TestCases/rans/oneram6/turb_ONERAM6.cfg index 230a9e918d5..724261b762f 100644 --- a/TestCases/rans/oneram6/turb_ONERAM6.cfg +++ b/TestCases/rans/oneram6/turb_ONERAM6.cfg @@ -287,8 +287,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output fields SCREEN_OUTPUT = (INNER_ITER, RMS_DENSITY, RMS_NU_TILDE, LIFT, DRAG) diff --git a/TestCases/rans/propeller/propeller.cfg b/TestCases/rans/propeller/propeller.cfg index 1205f9c2986..d8344a1aac5 100644 --- a/TestCases/rans/propeller/propeller.cfg +++ b/TestCases/rans/propeller/propeller.cfg @@ -268,8 +268,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 1500 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output fields SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_NU_TILDE, LIFT, DRAG) diff --git a/TestCases/rans/rae2822/turb_SA_RAE2822.cfg b/TestCases/rans/rae2822/turb_SA_RAE2822.cfg index e769c3e6d23..4c477629297 100644 --- a/TestCases/rans/rae2822/turb_SA_RAE2822.cfg +++ b/TestCases/rans/rae2822/turb_SA_RAE2822.cfg @@ -255,8 +255,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output fields SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_NU_TILDE, LIFT, DRAG) diff --git a/TestCases/rans/rae2822/turb_SST_RAE2822.cfg b/TestCases/rans/rae2822/turb_SST_RAE2822.cfg index 8466acb5939..ca399dd816c 100644 --- a/TestCases/rans/rae2822/turb_SST_RAE2822.cfg +++ b/TestCases/rans/rae2822/turb_SST_RAE2822.cfg @@ -232,8 +232,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % Screen output fields SCREEN_OUTPUT = (INNER_ITER, RMS_DENSITY, RMS_TKE, RMS_DISSIPATION, LIFT, DRAG) diff --git a/TestCases/rans/rae2822/turb_SST_SUST_RAE2822.cfg b/TestCases/rans/rae2822/turb_SST_SUST_RAE2822.cfg index e643c662e4e..4445ee1953c 100644 --- a/TestCases/rans/rae2822/turb_SST_SUST_RAE2822.cfg +++ b/TestCases/rans/rae2822/turb_SST_SUST_RAE2822.cfg @@ -232,8 +232,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % Screen output fields SCREEN_OUTPUT = (INNER_ITER, RMS_DENSITY, RMS_TKE, RMS_DISSIPATION, LIFT, DRAG) diff --git a/TestCases/rans/restart_directdiff_naca/naca0012.cfg b/TestCases/rans/restart_directdiff_naca/naca0012.cfg index 643e67acd33..2d43774b7a8 100644 --- a/TestCases/rans/restart_directdiff_naca/naca0012.cfg +++ b/TestCases/rans/restart_directdiff_naca/naca0012.cfg @@ -170,7 +170,6 @@ VOLUME_FILENAME= flow SURFACE_FILENAME= surface_flow % Writing solution file frequency OUTPUT_WRT_FREQ= 1 -WRT_CON_FREQ= 1 % % ----------------------- DESIGN VARIABLE PARAMETERS --------------------------% % diff --git a/TestCases/rans/s809/trans_s809.cfg b/TestCases/rans/s809/trans_s809.cfg index 4b92b991b08..01f9e1314c4 100644 --- a/TestCases/rans/s809/trans_s809.cfg +++ b/TestCases/rans/s809/trans_s809.cfg @@ -236,5 +236,3 @@ SURFACE_LIN_FILENAME= trans_surface_linear % Writing solution file frequency OUTPUT_WRT_FREQ= 1000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/rans/s809/turb_S809.cfg b/TestCases/rans/s809/turb_S809.cfg index 2b1d1727a40..7b9c61eccef 100644 --- a/TestCases/rans/s809/turb_S809.cfg +++ b/TestCases/rans/s809/turb_S809.cfg @@ -241,5 +241,3 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 1000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/rans/vki_turbine/turb_vki.cfg b/TestCases/rans/vki_turbine/turb_vki.cfg index 5241510254e..ee163c52c23 100644 --- a/TestCases/rans/vki_turbine/turb_vki.cfg +++ b/TestCases/rans/vki_turbine/turb_vki.cfg @@ -248,5 +248,3 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 1000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/rans_uq/naca0012/turb_NACA0012_uq.cfg b/TestCases/rans_uq/naca0012/turb_NACA0012_uq.cfg index b065fc34b5a..eb382dbe202 100644 --- a/TestCases/rans_uq/naca0012/turb_NACA0012_uq.cfg +++ b/TestCases/rans_uq/naca0012/turb_NACA0012_uq.cfg @@ -240,5 +240,3 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 10000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/rans_uq/naca0012/turb_NACA0012_uq_1c.cfg b/TestCases/rans_uq/naca0012/turb_NACA0012_uq_1c.cfg index 4738da603f8..9ed89140123 100644 --- a/TestCases/rans_uq/naca0012/turb_NACA0012_uq_1c.cfg +++ b/TestCases/rans_uq/naca0012/turb_NACA0012_uq_1c.cfg @@ -255,8 +255,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 10000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_TKE, RMS_DISSIPATION, LIFT, DRAG diff --git a/TestCases/rans_uq/naca0012/turb_NACA0012_uq_2c.cfg b/TestCases/rans_uq/naca0012/turb_NACA0012_uq_2c.cfg index fdd998c3098..193942e503c 100644 --- a/TestCases/rans_uq/naca0012/turb_NACA0012_uq_2c.cfg +++ b/TestCases/rans_uq/naca0012/turb_NACA0012_uq_2c.cfg @@ -255,8 +255,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 10000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_TKE, RMS_DISSIPATION, LIFT, DRAG diff --git a/TestCases/rans_uq/naca0012/turb_NACA0012_uq_3c.cfg b/TestCases/rans_uq/naca0012/turb_NACA0012_uq_3c.cfg index 6228bcb9a39..fea63cab1ad 100644 --- a/TestCases/rans_uq/naca0012/turb_NACA0012_uq_3c.cfg +++ b/TestCases/rans_uq/naca0012/turb_NACA0012_uq_3c.cfg @@ -255,8 +255,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 10000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_TKE, RMS_DISSIPATION, LIFT, DRAG diff --git a/TestCases/rans_uq/naca0012/turb_NACA0012_uq_p1c1.cfg b/TestCases/rans_uq/naca0012/turb_NACA0012_uq_p1c1.cfg index cd245f6bf57..83c63ba0207 100644 --- a/TestCases/rans_uq/naca0012/turb_NACA0012_uq_p1c1.cfg +++ b/TestCases/rans_uq/naca0012/turb_NACA0012_uq_p1c1.cfg @@ -255,8 +255,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 10000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_TKE, RMS_DISSIPATION, LIFT, DRAG diff --git a/TestCases/rans_uq/naca0012/turb_NACA0012_uq_p1c2.cfg b/TestCases/rans_uq/naca0012/turb_NACA0012_uq_p1c2.cfg index fdb5c4b38e8..4d2746756ca 100644 --- a/TestCases/rans_uq/naca0012/turb_NACA0012_uq_p1c2.cfg +++ b/TestCases/rans_uq/naca0012/turb_NACA0012_uq_p1c2.cfg @@ -255,8 +255,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 10000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_TKE, RMS_DISSIPATION, LIFT, DRAG diff --git a/TestCases/rotating/caradonna_tung/rot_caradonna_tung.cfg b/TestCases/rotating/caradonna_tung/rot_caradonna_tung.cfg index cf288dfc077..c789e00e4c6 100644 --- a/TestCases/rotating/caradonna_tung/rot_caradonna_tung.cfg +++ b/TestCases/rotating/caradonna_tung/rot_caradonna_tung.cfg @@ -228,7 +228,5 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 100 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 SCREEN_OUTPUT=(INNER_ITER, WALL_TIME, RMS_DENSITY, LIFT, DRAG, AVG_CFL) diff --git a/TestCases/rotating/naca0012/rot_NACA0012.cfg b/TestCases/rotating/naca0012/rot_NACA0012.cfg index 76bdc4687a0..8f3470cb08b 100644 --- a/TestCases/rotating/naca0012/rot_NACA0012.cfg +++ b/TestCases/rotating/naca0012/rot_NACA0012.cfg @@ -319,8 +319,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 1 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % --------------------- OPTIMAL SHAPE DESIGN DEFINITION -----------------------% % diff --git a/TestCases/sliding_interface/bars_SST_2D/bars.cfg b/TestCases/sliding_interface/bars_SST_2D/bars.cfg index cef6d4707a4..5d7e3d5a8f6 100644 --- a/TestCases/sliding_interface/bars_SST_2D/bars.cfg +++ b/TestCases/sliding_interface/bars_SST_2D/bars.cfg @@ -331,5 +331,3 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 50 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/sliding_interface/channel_2D/channel_2D_NN.cfg b/TestCases/sliding_interface/channel_2D/channel_2D_NN.cfg index c7365a34ad2..b3b7a75085e 100644 --- a/TestCases/sliding_interface/channel_2D/channel_2D_NN.cfg +++ b/TestCases/sliding_interface/channel_2D/channel_2D_NN.cfg @@ -232,5 +232,3 @@ SURFACE_FILENAME= surface_flow % Writing solution file frequency OUTPUT_WRT_FREQ= 1 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/sliding_interface/channel_2D/channel_2D_WA.cfg b/TestCases/sliding_interface/channel_2D/channel_2D_WA.cfg index 0ffba1e2d09..75311492230 100644 --- a/TestCases/sliding_interface/channel_2D/channel_2D_WA.cfg +++ b/TestCases/sliding_interface/channel_2D/channel_2D_WA.cfg @@ -230,5 +230,3 @@ SURFACE_FILENAME= surface_flow % Writing solution file frequency OUTPUT_WRT_FREQ= 1 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/sliding_interface/channel_3D/channel_3D_NN.cfg b/TestCases/sliding_interface/channel_3D/channel_3D_NN.cfg index e3b137ad592..6e00b13b6e3 100644 --- a/TestCases/sliding_interface/channel_3D/channel_3D_NN.cfg +++ b/TestCases/sliding_interface/channel_3D/channel_3D_NN.cfg @@ -232,5 +232,3 @@ SURFACE_FILENAME= surface_flow % Writing solution file frequency OUTPUT_WRT_FREQ= 1 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/sliding_interface/channel_3D/channel_3D_WA.cfg b/TestCases/sliding_interface/channel_3D/channel_3D_WA.cfg index bf20a0e8e03..cf83150bebd 100644 --- a/TestCases/sliding_interface/channel_3D/channel_3D_WA.cfg +++ b/TestCases/sliding_interface/channel_3D/channel_3D_WA.cfg @@ -230,5 +230,3 @@ SURFACE_FILENAME= surface_flow % Writing solution file frequency OUTPUT_WRT_FREQ= 1 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/sliding_interface/incompressible_steady/configCircle.cfg b/TestCases/sliding_interface/incompressible_steady/configCircle.cfg index 1d631e6a58a..e8407db3bef 100644 --- a/TestCases/sliding_interface/incompressible_steady/configCircle.cfg +++ b/TestCases/sliding_interface/incompressible_steady/configCircle.cfg @@ -133,5 +133,4 @@ SURFACE_FILENAME= surface_flow SURFACE_ADJ_FILENAME= surface_adjoint OUTPUT_WRT_FREQ= 1000 -WRT_CON_FREQ= 1 diff --git a/TestCases/sliding_interface/incompressible_steady/configOut.cfg b/TestCases/sliding_interface/incompressible_steady/configOut.cfg index b6005cceb7c..e7ef64e9db9 100644 --- a/TestCases/sliding_interface/incompressible_steady/configOut.cfg +++ b/TestCases/sliding_interface/incompressible_steady/configOut.cfg @@ -139,5 +139,4 @@ SURFACE_FILENAME= surface_flow SURFACE_ADJ_FILENAME= surface_adjoint OUTPUT_WRT_FREQ= 1000 -WRT_CON_FREQ= 1 diff --git a/TestCases/sliding_interface/incompressible_unsteady/configCircle.cfg b/TestCases/sliding_interface/incompressible_unsteady/configCircle.cfg index fb55f8f3070..2bffacac519 100644 --- a/TestCases/sliding_interface/incompressible_unsteady/configCircle.cfg +++ b/TestCases/sliding_interface/incompressible_unsteady/configCircle.cfg @@ -138,5 +138,4 @@ SURFACE_ADJ_FILENAME= surface_adjoint OUTPUT_WRT_FREQ= 1 -WRT_CON_FREQ= 1 diff --git a/TestCases/sliding_interface/incompressible_unsteady/configOut.cfg b/TestCases/sliding_interface/incompressible_unsteady/configOut.cfg index 2abcc945b7a..35a17cfa398 100644 --- a/TestCases/sliding_interface/incompressible_unsteady/configOut.cfg +++ b/TestCases/sliding_interface/incompressible_unsteady/configOut.cfg @@ -148,5 +148,4 @@ SURFACE_ADJ_FILENAME= surface_adjoint OUTPUT_WRT_FREQ= 1 -WRT_CON_FREQ= 1 diff --git a/TestCases/sliding_interface/pipe/pipe_NN.cfg b/TestCases/sliding_interface/pipe/pipe_NN.cfg index fb461e295ea..913ba4c38a8 100644 --- a/TestCases/sliding_interface/pipe/pipe_NN.cfg +++ b/TestCases/sliding_interface/pipe/pipe_NN.cfg @@ -237,5 +237,3 @@ SURFACE_FILENAME= surface_flow % Writing solution file frequency OUTPUT_WRT_FREQ= 50 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/sliding_interface/pipe/pipe_WA.cfg b/TestCases/sliding_interface/pipe/pipe_WA.cfg index e6e94904d89..04d38488e12 100644 --- a/TestCases/sliding_interface/pipe/pipe_WA.cfg +++ b/TestCases/sliding_interface/pipe/pipe_WA.cfg @@ -236,5 +236,3 @@ SURFACE_FILENAME= surface_flow % Writing solution file frequency OUTPUT_WRT_FREQ= 50 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/sliding_interface/rotating_cylinders/rot_cylinders_NN.cfg b/TestCases/sliding_interface/rotating_cylinders/rot_cylinders_NN.cfg index 786047a3c76..5d788fe62be 100644 --- a/TestCases/sliding_interface/rotating_cylinders/rot_cylinders_NN.cfg +++ b/TestCases/sliding_interface/rotating_cylinders/rot_cylinders_NN.cfg @@ -235,5 +235,3 @@ SURFACE_FILENAME= surface_flow % Writing solution file frequency OUTPUT_WRT_FREQ= 50 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/sliding_interface/rotating_cylinders/rot_cylinders_WA.cfg b/TestCases/sliding_interface/rotating_cylinders/rot_cylinders_WA.cfg index efce88556d9..2a0ec112c1e 100644 --- a/TestCases/sliding_interface/rotating_cylinders/rot_cylinders_WA.cfg +++ b/TestCases/sliding_interface/rotating_cylinders/rot_cylinders_WA.cfg @@ -237,5 +237,3 @@ SURFACE_FILENAME= surface_flow % Writing solution file frequency OUTPUT_WRT_FREQ= 50 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/sliding_interface/single_stage/single_stage_NN.cfg b/TestCases/sliding_interface/single_stage/single_stage_NN.cfg index dd4930fe1a8..141cb2081ae 100644 --- a/TestCases/sliding_interface/single_stage/single_stage_NN.cfg +++ b/TestCases/sliding_interface/single_stage/single_stage_NN.cfg @@ -275,5 +275,3 @@ SURFACE_FILENAME= surface_flow % Writing solution file frequency OUTPUT_WRT_FREQ= 50 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/sliding_interface/single_stage/single_stage_WA.cfg b/TestCases/sliding_interface/single_stage/single_stage_WA.cfg index 5ec65d7b663..a64ac575c78 100644 --- a/TestCases/sliding_interface/single_stage/single_stage_WA.cfg +++ b/TestCases/sliding_interface/single_stage/single_stage_WA.cfg @@ -273,5 +273,3 @@ SURFACE_FILENAME= surface_flow % Writing solution file frequency OUTPUT_WRT_FREQ= 50 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/sliding_interface/supersonic_vortex_shedding/sup_vor_shed_NN.cfg b/TestCases/sliding_interface/supersonic_vortex_shedding/sup_vor_shed_NN.cfg index 894a331d321..c67f4e33299 100644 --- a/TestCases/sliding_interface/supersonic_vortex_shedding/sup_vor_shed_NN.cfg +++ b/TestCases/sliding_interface/supersonic_vortex_shedding/sup_vor_shed_NN.cfg @@ -238,5 +238,3 @@ SURFACE_FILENAME= surface_flow % Writing solution file frequency OUTPUT_WRT_FREQ= 50 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/sliding_interface/supersonic_vortex_shedding/sup_vor_shed_WA.cfg b/TestCases/sliding_interface/supersonic_vortex_shedding/sup_vor_shed_WA.cfg index 94e06370133..1b55ee492f2 100644 --- a/TestCases/sliding_interface/supersonic_vortex_shedding/sup_vor_shed_WA.cfg +++ b/TestCases/sliding_interface/supersonic_vortex_shedding/sup_vor_shed_WA.cfg @@ -238,5 +238,3 @@ SURFACE_FILENAME= surface_flow % Writing solution file frequency OUTPUT_WRT_FREQ= 50 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/sliding_interface/uniform_flow/uniform_NN.cfg b/TestCases/sliding_interface/uniform_flow/uniform_NN.cfg index 299e061e849..5cb885c84f0 100644 --- a/TestCases/sliding_interface/uniform_flow/uniform_NN.cfg +++ b/TestCases/sliding_interface/uniform_flow/uniform_NN.cfg @@ -235,5 +235,3 @@ SURFACE_FILENAME= surface_flow % Writing solution file frequency OUTPUT_WRT_FREQ= 50 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/sliding_interface/uniform_flow/uniform_WA.cfg b/TestCases/sliding_interface/uniform_flow/uniform_WA.cfg index 219b36e3441..31def6809ef 100644 --- a/TestCases/sliding_interface/uniform_flow/uniform_WA.cfg +++ b/TestCases/sliding_interface/uniform_flow/uniform_WA.cfg @@ -235,5 +235,3 @@ SURFACE_FILENAME= surface_flow % Writing solution file frequency OUTPUT_WRT_FREQ= 50 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/transition/E387_Airfoil/transitional_BC_model_ConfigFile.cfg b/TestCases/transition/E387_Airfoil/transitional_BC_model_ConfigFile.cfg index 3107448313c..29add17a169 100644 --- a/TestCases/transition/E387_Airfoil/transitional_BC_model_ConfigFile.cfg +++ b/TestCases/transition/E387_Airfoil/transitional_BC_model_ConfigFile.cfg @@ -240,5 +240,3 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/transition/Schubauer_Klebanoff/transitional_BC_model_ConfigFile.cfg b/TestCases/transition/Schubauer_Klebanoff/transitional_BC_model_ConfigFile.cfg index 04819666be1..f45281331c9 100644 --- a/TestCases/transition/Schubauer_Klebanoff/transitional_BC_model_ConfigFile.cfg +++ b/TestCases/transition/Schubauer_Klebanoff/transitional_BC_model_ConfigFile.cfg @@ -273,8 +273,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 500 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (INNER_ITER, RMS_PRESSURE, RMS_NU_TILDE, LIFT, DRAG) diff --git a/TestCases/transition/T3A_FlatPlate/transitional_BC_model_ConfigFile.cfg b/TestCases/transition/T3A_FlatPlate/transitional_BC_model_ConfigFile.cfg index 572af6811fa..982880bd3d1 100644 --- a/TestCases/transition/T3A_FlatPlate/transitional_BC_model_ConfigFile.cfg +++ b/TestCases/transition/T3A_FlatPlate/transitional_BC_model_ConfigFile.cfg @@ -259,5 +259,3 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 500 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/turbomachinery/APU_turbocharger/Jones.cfg b/TestCases/turbomachinery/APU_turbocharger/Jones.cfg index 89aad2756c2..3b34e71a76e 100755 --- a/TestCases/turbomachinery/APU_turbocharger/Jones.cfg +++ b/TestCases/turbomachinery/APU_turbocharger/Jones.cfg @@ -342,5 +342,3 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 100 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/turbomachinery/APU_turbocharger/Jones_rst.cfg b/TestCases/turbomachinery/APU_turbocharger/Jones_rst.cfg index 841d6e1f4cd..3d327e87961 100755 --- a/TestCases/turbomachinery/APU_turbocharger/Jones_rst.cfg +++ b/TestCases/turbomachinery/APU_turbocharger/Jones_rst.cfg @@ -347,5 +347,3 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 100 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/turbomachinery/axial_stage_2D/Axial_stage2D.cfg b/TestCases/turbomachinery/axial_stage_2D/Axial_stage2D.cfg index 069ff05ccdd..57e5a63d1f6 100755 --- a/TestCases/turbomachinery/axial_stage_2D/Axial_stage2D.cfg +++ b/TestCases/turbomachinery/axial_stage_2D/Axial_stage2D.cfg @@ -334,5 +334,3 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 1000 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/turbomachinery/centrifugal_blade/centrifugal_blade.cfg b/TestCases/turbomachinery/centrifugal_blade/centrifugal_blade.cfg index 9980f11cc95..e33415dc7ec 100755 --- a/TestCases/turbomachinery/centrifugal_blade/centrifugal_blade.cfg +++ b/TestCases/turbomachinery/centrifugal_blade/centrifugal_blade.cfg @@ -358,5 +358,3 @@ SURFACE_FILENAME= surface_flow % Writing solution file frequency OUTPUT_WRT_FREQ= 500 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/turbomachinery/centrifugal_stage/centrifugal_stage.cfg b/TestCases/turbomachinery/centrifugal_stage/centrifugal_stage.cfg index dc964970013..40d7b49f8a3 100755 --- a/TestCases/turbomachinery/centrifugal_stage/centrifugal_stage.cfg +++ b/TestCases/turbomachinery/centrifugal_stage/centrifugal_stage.cfg @@ -366,5 +366,3 @@ SURFACE_FILENAME= surface_flow % Writing solution file frequency OUTPUT_WRT_FREQ= 500 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/turbomachinery/transonic_stator_2D/transonic_stator.cfg b/TestCases/turbomachinery/transonic_stator_2D/transonic_stator.cfg index e16c79dab79..9a86ea4578b 100644 --- a/TestCases/turbomachinery/transonic_stator_2D/transonic_stator.cfg +++ b/TestCases/turbomachinery/transonic_stator_2D/transonic_stator.cfg @@ -342,5 +342,3 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 500 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/turbomachinery/transonic_stator_2D/transonic_stator_rst.cfg b/TestCases/turbomachinery/transonic_stator_2D/transonic_stator_rst.cfg index 7249a603be3..6646c803dcb 100644 --- a/TestCases/turbomachinery/transonic_stator_2D/transonic_stator_rst.cfg +++ b/TestCases/turbomachinery/transonic_stator_2D/transonic_stator_rst.cfg @@ -347,5 +347,3 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 500 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/unsteady/pitching_naca0015_rans_inc/config_incomp_turb_sa.cfg b/TestCases/unsteady/pitching_naca0015_rans_inc/config_incomp_turb_sa.cfg index 3789ccf468f..7045568c646 100644 --- a/TestCases/unsteady/pitching_naca0015_rans_inc/config_incomp_turb_sa.cfg +++ b/TestCases/unsteady/pitching_naca0015_rans_inc/config_incomp_turb_sa.cfg @@ -114,5 +114,4 @@ GRAD_OBJFUNC_FILENAME= of_grad.dat SURFACE_FILENAME= surface_flow SURFACE_ADJ_FILENAME= surface_adjoint OUTPUT_WRT_FREQ= 1 -WRT_CON_FREQ= 1 SCREEN_OUTPUT= (TIME_ITER, INNER_ITER, RMS_PRESSURE, RMS_NU_TILDE, LIFT, DRAG) diff --git a/TestCases/unsteady/pitching_naca64a010_euler/pitching_NACA64A010.cfg b/TestCases/unsteady/pitching_naca64a010_euler/pitching_NACA64A010.cfg index 332f7b16d6d..6c1b3eec9b7 100644 --- a/TestCases/unsteady/pitching_naca64a010_euler/pitching_NACA64A010.cfg +++ b/TestCases/unsteady/pitching_naca64a010_euler/pitching_NACA64A010.cfg @@ -320,8 +320,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 250 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % --------------------- OPTIMAL SHAPE DESIGN DEFINITION -----------------------% % diff --git a/TestCases/unsteady/pitching_naca64a010_rans/turb_NACA64A010.cfg b/TestCases/unsteady/pitching_naca64a010_rans/turb_NACA64A010.cfg index 63076442bec..beb15824813 100644 --- a/TestCases/unsteady/pitching_naca64a010_rans/turb_NACA64A010.cfg +++ b/TestCases/unsteady/pitching_naca64a010_rans/turb_NACA64A010.cfg @@ -344,8 +344,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency for physical time steps (dual time) OUTPUT_WRT_FREQ= 1 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % --------------------- OPTIMAL SHAPE DESIGN DEFINITION -----------------------% % diff --git a/TestCases/unsteady/plunging_naca0012/plunging_NACA0012.cfg b/TestCases/unsteady/plunging_naca0012/plunging_NACA0012.cfg index 45f53f72d60..32874ec5f82 100644 --- a/TestCases/unsteady/plunging_naca0012/plunging_NACA0012.cfg +++ b/TestCases/unsteady/plunging_naca0012/plunging_NACA0012.cfg @@ -249,5 +249,3 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency OUTPUT_WRT_FREQ= 1 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 diff --git a/TestCases/unsteady/square_cylinder/turb_square.cfg b/TestCases/unsteady/square_cylinder/turb_square.cfg index c4e92d1fdcd..a24b6b55cdf 100644 --- a/TestCases/unsteady/square_cylinder/turb_square.cfg +++ b/TestCases/unsteady/square_cylinder/turb_square.cfg @@ -258,8 +258,6 @@ SURFACE_ADJ_FILENAME= surface_adjoint % Writing solution file frequency for physical time steps (dual time) OUTPUT_WRT_FREQ= 1 % -% Writing convergence history frequency -WRT_CON_FREQ= 1 % % Screen output SCREEN_OUTPUT= (TIME_ITER, INNER_ITER, RMS_DENSITY, RMS_TKE, RMS_DISSIPATION, LIFT, DRAG)