-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainer.py
344 lines (325 loc) · 16.9 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
from model_list import MODEL
from utils import get_metrics, get_logger, get_name, count_parameters_in_MB
from torch.utils.tensorboard import SummaryWriter
from torch.nn.utils import clip_grad_norm_
import torch
import time
import numpy as np
from hyperopt import fmin, tpe, hp, Trials, partial, STATUS_OK, rand, space_eval
from os import mkdir, makedirs
from os.path import exists
from models.genotypes_new import NA_PRIMITIVES, LC_PRIMITIVES, LF_PRIMITIVES, SEQ_PRIMITIVES
# DEBUG
from hyperopt.pyll.stochastic import sample
from pprint import pprint
from itertools import product
from sortedcontainers import SortedDict
EPOCH_TEST = {"icews14/": 30,
"icews05-15/": 10,
"gdelt/": 30,
"wikidata11k/": 50}
class Trainer(object):
cnt_tune = 0
def __init__(self, args, dataset_info_dict, train_loader, evaluate_loader, device):
self.args = args
self.device = device
self.dataset_info_dict = dataset_info_dict
self.train_loader = train_loader
self.evaluate_loader = evaluate_loader
self.optimizer = None
self.scheduler = None
self.search_space = None
self.logger = None
def train(self):
name = get_name(self.args)
log_dir = f'{self.args.log_dir}{self.args.dataset}{self.args.train_mode}/'
if not exists(log_dir):
mkdir(log_dir)
self.logger = get_logger(name, log_dir)
self.logger.info(self.args)
writer = SummaryWriter(self.args.tensorboard_dir + self.args.dataset + name)
model = MODEL[self.args.encoder](self.args, self.dataset_info_dict, self.device)
model = model.cuda()
self.logger.info("Parameter size = %fMB", count_parameters_in_MB(model))
self.optimizer = torch.optim.Adam(model.parameters(), lr=self.args.learning_rate, weight_decay=0.0001)
best_val_mrr, best_test_mrr = 0.0, 0.0
early_stop_cnt = 0
for epoch in range(1, self.args.max_epoch + 1):
training_loss = self.train_epoch(epoch, model, architect=None, lr=None, mode="train")
valid_mrr = self.evaluate_epoch(epoch, model, split="valid")
if valid_mrr > best_val_mrr:
early_stop_cnt = 0
best_val_mrr = valid_mrr
test_mrr = self.evaluate_epoch(epoch, model, split="test")
if test_mrr > best_test_mrr:
best_test_mrr = test_mrr
self.logger.info("Success")
# torch.save(model.state_dict(), f'{args.saved_model_dir}{name}.pth')
else:
early_stop_cnt += 1
if early_stop_cnt > 10:
self.logger.info("Early stop!")
self.logger.info(best_test_mrr)
break
writer.add_scalar('Loss/train', training_loss, epoch)
writer.add_scalar('MRR/test', best_test_mrr, epoch)
def random_bayesian_search(self):
genotype_space = []
for i in range(self.args.gnn_layer_num):
genotype_space.append(hp.choice("G" + str(i), NA_PRIMITIVES))
genotype_space.append(hp.choice("SEQ" + str(i), SEQ_PRIMITIVES))
if i != self.args.gnn_layer_num - 1:
genotype_space.append(hp.choice("LC" + str(i), LC_PRIMITIVES))
else:
genotype_space.append(hp.choice("LA" + str(i), LF_PRIMITIVES))
trials = Trials()
search_time = 0.0
t_start = time.time()
if self.args.search_mode == "random":
best = fmin(self.train_parameter, genotype_space, algo=rand.suggest,
max_evals=self.args.baseline_sample_num,
trials=trials)
elif self.args.search_mode == "bayesian":
best = fmin(self.train_parameter, genotype_space,
algo=partial(tpe.suggest, n_startup_jobs=int(self.args.baseline_sample_num) / 5),
max_evals=self.args.baseline_sample_num,
trials=trials)
else:
raise NotImplementedError
best_genotype = space_eval(genotype_space, best)
t_end = time.time()
search_time += (t_end - t_start)
return "||".join(best_genotype)
def evaluate_epoch(self, current_epoch, model, split="valid", evaluate_ws=False, mode=None):
rank_list = []
loss_list = []
model.eval()
with torch.no_grad():
for batch_idx, timestamps in enumerate(self.evaluate_loader):
if mode == "spos_train":
model.ent_encoder.ops = model.ent_encoder.generate_single_path()
rank, loss = model.evaluate(timestamps, split, evaluate_ws=evaluate_ws)
rank_list.append(rank)
if split == 'valid' or split == 'train':
loss_list.append(loss.item())
else:
loss_list.append(loss)
if split == "train":
self.logger.info(
'[Epoch:{} | {}]: Loss:{:.4}'.format(
current_epoch, split.capitalize() + ('_WS' if evaluate_ws else ""), np.mean(loss_list)))
return np.mean(loss_list)
else:
all_ranks = torch.cat(rank_list)
mrr, hit_1, hit_3, hit_10 = get_metrics(all_ranks)
metrics_dict = {'mrr': mrr, 'hit_10': hit_10, 'hit_3': hit_3, 'hit_1': hit_1}
metrics_result = {k: v.item() for k, v in metrics_dict.items()}
# self.logger.info(
# '[Epoch:{} | {}]: {} Loss:{:.4}'.format(current_epoch, split.capitalize(), split.capitalize(), np.mean(loss_list)))
self.logger.info('[Epoch:{} | {}]: Loss:{:.4}, MRR:{:.3}, Hits@10:{:.3}, Hits@3:{:.3}, Hits@1:{:.3}'.format(
current_epoch, split.capitalize() + ('_WS' if evaluate_ws else ""), np.mean(loss_list),
metrics_result['mrr'], metrics_result['hit_10'],
metrics_result['hit_3'],
metrics_result['hit_1']))
return metrics_result['mrr'], np.mean(loss_list)
def train_epoch(self, current_epoch, model, architect=None, lr=None, mode='NONE'):
train_loss_list = []
for batch_idx, train_timestamps in enumerate(self.train_loader):
if mode == "spos_search":
train_loss = model(train_timestamps)
train_loss_list.append(train_loss.item())
else:
model.train()
if mode == "spos_train":
model.ent_encoder.ops = model.ent_encoder.generate_single_path()
self.optimizer.zero_grad()
train_loss = model(train_timestamps)
train_loss_list.append(train_loss.item())
train_loss.backward()
self.optimizer.step()
self.logger.info('[Epoch:{} | {}]: Train Loss:{:.4}'.format(current_epoch, self.args.train_mode.capitalize(),
np.mean(train_loss_list)))
return np.mean(train_loss_list)
def fine_tuning(self, genotype):
hyper_space = {
'weight_decay': hp.uniform("wr", -5, -3),
'seq_head_num': hp.choice('seq_head_num', [2, 4, 8]),
'head_num': hp.choice('head_num', [2, 4, 8]),
}
self.args.genotype = genotype
trials = Trials()
best = fmin(self.train_parameter, hyper_space,
algo=partial(tpe.suggest, n_startup_jobs=int(self.args.tune_sample_num) / 5),
max_evals=self.args.tune_sample_num,
trials=trials)
space = space_eval(hyper_space, best)
for k, v in space.items():
setattr(self.args, k, v)
best_val_mrr, best_test_mrr = 0.0, 0.0
for d in trials.results:
if -d["loss"] > best_val_mrr:
best_val_mrr = -d["loss"]
best_test_mrr = d["test_mrr"]
with open(self.args.tune_res_dir + self.args.dataset + self.args.genotype, "w") as f1:
f1.write(str(vars(self.args)) + "\n")
f1.write(str(best_test_mrr))
def train_parameter(self, parameter):
Trainer.cnt_tune += 1
self.args.index = Trainer.cnt_tune
if self.args.train_mode == "search":
self.args.genotype = "||".join(parameter)
else:
parameter['weight_decay'] = 10 ** parameter['weight_decay']
for k, v in parameter.items():
setattr(self.args, k, v)
name = get_name(self.args)
search_res_dir = self.args.search_res_file.split('/')[-1].split('.')[0]
log_dir = f'{self.args.log_dir}{self.args.dataset}{self.args.train_mode}/{self.args.search_mode}/{self.args.encoder}/' \
f'{search_res_dir}/'
if not exists(log_dir):
makedirs(log_dir)
self.logger = get_logger(name, log_dir)
self.logger.info(self.args)
model = MODEL[self.args.encoder](self.args, self.dataset_info_dict, self.device, self.args.genotype)
model = model.cuda()
self.logger.info("Parameter size = %fMB", count_parameters_in_MB(model))
if self.args.optimizer == 'adam':
self.optimizer = torch.optim.Adam(
model.parameters(),
self.args.learning_rate,
weight_decay=self.args.weight_decay
)
elif self.args.optimizer == 'adagrad':
self.optimizer = torch.optim.Adagrad(
model.parameters(),
self.args.learning_rate,
weight_decay=self.args.weight_decay
)
self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, mode='max', factor=0.2, patience=10, verbose=True)
best_valid_mrr, best_test_mrr = 0.0, 0.0
early_stop_cnt = 0
for epoch in range(1, self.args.max_epoch + 1):
loss = self.train_epoch(epoch, model, mode="tune")
valid_mrr, _ = self.evaluate_epoch(epoch, model, split="valid")
if valid_mrr > best_valid_mrr:
early_stop_cnt = 0
best_valid_mrr = valid_mrr
if self.args.train_mode == "tune" and epoch > EPOCH_TEST[self.args.dataset]:
test_mrr, _ = self.evaluate_epoch(epoch, model, split="test")
if test_mrr > best_test_mrr:
best_test_mrr = test_mrr
self.logger.info("Success")
else:
early_stop_cnt += 1
if early_stop_cnt > 25 or epoch == self.args.max_epoch:
self.logger.info("Early stop!")
self.logger.info(f'{best_valid_mrr} {self.args.genotype}')
break
self.scheduler.step(best_valid_mrr)
return {'loss': -best_valid_mrr, 'status': STATUS_OK} if self.args.train_mode == "search" else {'loss': -best_valid_mrr, 'test_mrr':best_test_mrr,'status': STATUS_OK}
def debug(self, genotype):
Trainer.cnt_tune += 1
self.args.genotype = genotype
name = get_name(self.args)
log_dir = f'{self.args.log_dir}{self.args.dataset}{self.args.train_mode}/{self.args.encoder}/' \
f'{self.args.time_log_dir}_{self.args.random_seed}/'
if not exists(log_dir):
makedirs(log_dir)
self.logger = get_logger(name, log_dir)
self.logger.info(self.args)
writer = SummaryWriter(
f'{self.args.tensorboard_dir}{self.args.dataset}{self.args.train_mode}/{self.args.encoder}/{self.args.time_log_dir}_{self.args.random_seed}/')
model = MODEL[self.args.encoder](self.args, self.dataset_info_dict, self.device, self.args.genotype)
model = model.cuda()
self.logger.info("Parameter size = %fMB", count_parameters_in_MB(model))
self.optimizer = torch.optim.Adam(model.parameters(), lr=self.args.learning_rate,
weight_decay=self.args.weight_decay)
self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, mode='max', factor=0.2, patience=10, verbose=True)
best_valid_mrr, best_test_mrr = 0.0, 0.0
early_stop_cnt = 0
for epoch in range(1, self.args.max_epoch + 1):
train_loss = self.train_epoch(epoch, model, mode="tune")
valid_mrr, valid_loss = self.evaluate_epoch(epoch, model, split="valid")
if valid_mrr > best_valid_mrr:
early_stop_cnt = 0
best_valid_mrr = valid_mrr
test_mrr, _ = self.evaluate_epoch(epoch, model, split="test")
if test_mrr > best_test_mrr:
best_test_mrr = test_mrr
else:
early_stop_cnt += 1
if early_stop_cnt > 25 or epoch == self.args.max_epoch:
self.logger.info("Early stop!")
self.logger.info(f'{best_valid_mrr} {self.args.genotype}')
break
self.scheduler.step(best_valid_mrr)
# writer.add_scalar('Loss/train', train_loss, epoch)
# writer.add_scalar('Loss/valid', valid_loss, epoch)
writer.add_scalar('MRR/test', best_test_mrr, epoch)
def spos_train_supernet(self):
name = get_name(self.args)
log_dir = f'{self.args.log_dir}{self.args.dataset}{self.args.train_mode}/{self.args.search_mode}/{self.args.encoder}/' \
f'{self.args.time_log_dir}_{self.args.random_seed}/'
if not exists(log_dir):
makedirs(log_dir)
weights_dir = f'weights/{self.args.dataset}{self.args.train_mode}/{self.args.search_mode}/{self.args.encoder}/{self.args.time_log_dir}_{self.args.random_seed}/'
if not exists(weights_dir):
makedirs(weights_dir)
self.logger = get_logger(name, log_dir)
self.logger.info(self.args)
self.logger.info(f'Log file is saved in {log_dir}')
self.logger.info(f'Weight file is saved in {weights_dir}')
writer = SummaryWriter(
f'{self.args.tensorboard_dir}{self.args.dataset}{self.args.train_mode}/{self.args.search_mode}/{self.args.encoder}/{self.args.time_log_dir}/{self.args.random_seed}')
model = MODEL[self.args.encoder](self.args, self.dataset_info_dict, self.device)
model = model.cuda()
self.optimizer = torch.optim.Adam(model.parameters(), lr=self.args.learning_rate,
weight_decay=self.args.weight_decay)
search_time = 0.0
best_val_mrr, best_test_mrr = 0.0, 0.0
for epoch in range(1, self.args.search_max_epoch + 1):
t_start = time.time()
train_loss = self.train_epoch(epoch, model, mode="spos_train")
valid_mrr, valid_loss = self.evaluate_epoch(epoch, model, split="valid", evaluate_ws=False,
mode="spos_train")
t_end = time.time()
search_time += (t_end - t_start)
writer.add_scalar('Loss/train', train_loss, epoch)
writer.add_scalar('Loss/valid', valid_loss, epoch)
writer.add_scalar('MRR/valid', valid_mrr, epoch)
torch.save(model.state_dict(), f'{weights_dir}epoch_{self.args.search_max_epoch}.pt')
search_time = search_time / 3600
self.logger.info(f'The search process costs {search_time:.2f}h.')
return None
def spos_arch_search(self):
name = '_search_'+str(self.args.random_seed)
log_dir = self.args.weight_path.replace('weights', 'logs', 1).split('.')[0]
if not exists(log_dir):
makedirs(log_dir)
self.logger = get_logger(name, log_dir)
self.logger.info(f'Log file is saved in {log_dir}')
model = MODEL[self.args.encoder](self.args, self.dataset_info_dict, self.device)
model = model.cuda()
model.load_state_dict(torch.load(self.args.weight_path))
self.logger.info(f'Finish loading checkpoint from {self.args.weight_path}')
search_time = 0.0
valid_mrr_searched_arch_res = SortedDict()
for epoch in range(1, self.args.arch_sample_num + 1):
model.ent_encoder.ops = model.ent_encoder.generate_single_path()
arch = "||".join(model.ent_encoder.ops)
t_start = time.time()
valid_mrr, valid_loss = self.evaluate_epoch(epoch, model, split="valid", evaluate_ws=False)
valid_mrr_searched_arch_res.setdefault(valid_mrr, arch)
self.logger.info('[Epoch:{} | {}]: Path:{}'.format(epoch, self.args.arch_sample_num, arch))
t_end = time.time()
search_time += (t_end - t_start)
search_time = search_time / 3600
self.logger.info(f'The search process costs {search_time:.2f}h.')
import csv
with open(log_dir+'_search_valid_mrr_'+str(self.args.random_seed)+'_res.csv', 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow(['valid mrr', 'arch'])
res = valid_mrr_searched_arch_res.items()
for i in range(500):
writer.writerow([res[-1-i][0], res[-1-i][1]])
return res[-1][1]