-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtranscribe.py
46 lines (36 loc) · 1.2 KB
/
transcribe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
import os
from tqdm import tqdm
# Define transcription pipeline
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "openai/whisper-medium"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
batch_size=16,
return_timestamps=True,
torch_dtype=torch_dtype,
device=device,
)
# Generate transcriptions
dir_ = "./audios"
all_pods = os.listdir(dir_)
for pod in tqdm(all_pods, desc="Processing", unit="item"):
full_path = os.path.join(dir_, pod)
result = pipe(full_path)
result_txt = result["text"]
new_file = pod.replace(".mp3", ".txt")
new_path = os.path.join("./texts", new_file)
with open(new_path, 'w') as file:
file.write(result_txt)