-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
32 lines (27 loc) · 1.36 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import numpy as np
import pandas as pd
import settings
from transformers import BartTokenizer, BartForConditionalGeneration
summarizer = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn')
tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
def get_summary(text, max_length=150):
inputs = tokenizer.encode("summarize: " + text, return_tensors="pt", max_length=1024, truncation=True)
summary_ids = summarizer.generate(inputs, max_length=max_length, min_length=50, length_penalty=5., num_beams=2)
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
# Format documented here https://docs.pinecone.io/docs/overview#upsert-and-query-vector-embeddings-with-the-pinecone-api
def transform_to_pinecone_format(dataset):
for idx, entry in enumerate(dataset):
# to avoid error "Metadata size is 53581 bytes, which exceeds the limit of 40960 bytes per vector"
truncated_text = entry['metadata']['text'][:settings.MAX_TEXT_LENGTH]
transformed = {
'id': str(idx + 1),
'values': entry['values'],
'metadata': {
'pdf_file': entry['metadata']['pdf_file'],
'text': truncated_text
}
}
yield transformed
def iter_batches(data, batch_size):
for i in range(0, len(data), batch_size):
yield data[i:i + batch_size]