-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathYNAL_multievent_IPM_Sarah_v3.R
542 lines (432 loc) · 16.2 KB
/
YNAL_multievent_IPM_Sarah_v3.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
##########################################################################
#
# YELLOW-NOSED ALBATROSS MULTI-STATE INTEGRATED POPULATION MODEL
#
##########################################################################
## written August 2016 by Sarah Converse
## On top of ME model from October 2015
## Variation on model by Cat Horswill
# Load necessary libraries
library(jagsUI)
#############################################################
#
# LOAD AND MANIPULATE DATA
#
##############################################################
#read in COUNT DATA
setwd("C:\\Users\\sconverse\\Documents\\Albatross\\Peter Ryan-YNAL\\Analysis\\IPM")
#Number of breeding pairs and chicks fledged from census data
############################################################################# missing counts in 2015
counts <- read.csv("YNAL_counts.csv")
nP<-counts[,2] #breeding pairs
nF<-counts[,3] #young females (assuming 1:1 sex ratio)
#Stable age distribution
stable.rate <- c(0.075,0.070,0.064,0.060,0.045,0.034,0.026,0.019,0.015,0.011,0.009,0.007,0.005,0.004,0.003,0.150,0.107,0.296)
stable <- rmultinom(1,450,stable.rate)
#read in MARK EH
eh <- read.csv("YNdata_thru15_working.csv")
eh <- as.matrix(eh)
eh <- eh[,-(1:6)]
YNstate <- eh
colnames(YNstate) = colnames(eh)
# Events are
#0 = unobserved -> #6 Unobs
#1 = loaf in colony, -> #2 Loaf In
#2 = loaf out of colony, -> #6 Unobs
#3 = successful breed in colony, -> #3 Breed-in-S
#4 = breed outside colony, -> #5 Breed-Out
#5 = failed breed in colony, -> #4 Breed-in-F
#7 = confirmed dead, -> #6 Unobs
#8 = juvenile hatched in colony, -> #1 Juv
#9 = juvenile hatched out of colony -> #6 Unobs
#Condition on being captured first in the study area as a breeder or a juvenile
condcap <- rep(NA,nrow(YNstate))
for(i in 1:nrow(YNstate)){
condcap[i] <- min(c(which(YNstate[i,] == 3),which(YNstate[i,] == 5),which(YNstate[i,] == 8),(ncol(YNstate)+1)))
if(condcap[i] == '1'){
YNstate[i,] <- YNstate[i,]
}else YNstate[i,(1:(condcap[i]-1))] <- 0
}
#Reassign events as
#1 = Juvenile
#2 = Loaf In
#3 = Breed In S
#4 = Breed In F
#5 = Breed Out
#6 = no observation
#reassign events according to matrices in model
for(i in 1:nrow(YNstate)){
for(j in 1:ncol(YNstate)){
if(YNstate[i,j] == '0'){
YNstate[i,j] <- '6'
}else if(YNstate[i,j] == '1'){
YNstate[i,j] <- '2'
}else if(YNstate[i,j] == '2'){
YNstate[i,j] <- '6'
}else if(YNstate[i,j] == '3'){
YNstate[i,j] <- '3'
}else if(YNstate[i,j] == '4'){
YNstate[i,j] <- '5'
}else if(YNstate[i,j] == '5'){
YNstate[i,j] <- '4'
}else if(YNstate[i,j] == '7'){
YNstate[i,j] <- '6'
}else if(YNstate[i,j] == '8'){
YNstate[i,j] <- '1'
}else if(YNstate[i,j] == '9'){
YNstate[i,j] <- '6'
}
}
}
class(YNstate) <- 'numeric'
#pull out birds never observed in the admissable events
admit <- function(x) length(which(x!=6))
not.admit <- apply(YNstate,1,admit)
Y <- YNstate[-c(which(not.admit==0)),]
#number of individuals and number of years
nind <- nrow(Y)
nyear <- ncol(Y)
#determine first capture occassion for bounding likelihood
get.first <- function(x) min(which(x<6))
first <- apply(Y,1,get.first)
#Determine event at first release for all birds (should be 1, 2 or 3)
first.event <- rep(NA,nrow(Y))
for(i in 1:nrow(Y)){
first.event[i] <- Y[i,min(which(Y[i,]<6))]
}
#get birds that were captured as juveniles
juv <- Y[which(first.event==1),]
#get when first bred
first.breed <- rep(NA,nrow(juv))
for(i in 1:nrow(juv)){
first.breed[i] <- min(which(juv[i,]==3 | juv[i,]==4 | juv[i,] ==5),(nyear+1))
}
#get those indviduals that recruited
juv.rec <- juv[which(first.breed <(nyear+1)),]
first.breed <- first.cap <- rep(NA,nrow(juv.rec))
#get the age at observed recruitment for those individuals that recruited
for(i in 1:nrow(juv.rec)){
first.cap[i] <- which(juv.rec[i,]==1)
first.breed[i] <- min(which(juv.rec[i,]==3 | juv.rec[i,]==4 | juv.rec[i,] ==5),(nyear+1))
}
recruit.obs <- first.breed-first.cap
#age for known age birds
age <- matrix(data=NA,nrow=nrow(Y),ncol=ncol(Y))
condcap3 <- rep(NA,nrow(Y))
for(i in 1:nrow(Y)){
condcap3[i] <- min(c(which(Y[i,] == 1),(ncol(Y)+1)))
for(j in 1:ncol(age)){
if(j < condcap3[i]){
age[i,j] <- 'NA'
}else if(j == condcap3[i]){
age[i,j] <- 'NA'
}else age[i,j] <- j-condcap3[i]
}
}
class(age) <- 'numeric'
age[is.na(age)]<- nyear ### changed from 33
#Deal with variable years for captures
#ps which are 0 out of colony
yrs.out <- c(18,22,23,24,25,26,27,32,34)
yrs.in <- c(1:(nyear-1)); yrs.in <- yrs.in[-yrs.out]
nyear.out <- length(yrs.out)
nyear.in <- length(yrs.in)
for(i in 1:nrow(Y)){
for(j in c(1,yrs.in+1)){
if(Y[i,j] == 5){
Y[i,j] <- 6
}
}
}
#give this as data to initialize the first time step
z.first <- rep(NA,nind)
for(i in 1:nind){
if(first.event[i]==1){
z.first[i] <- 1
}else if(first.event[i]==3){
z.first[i] <- 3
}else if(first.event[i]==4){
z.first[i] <- 4
}
}
#Initialize process matrix
z.start <- Y
for(i in 1:nind){
if(first[i]>1){
z.start[i,1:(first[i])] <- NA
}
}
first.breed <- rep(NA,nind)
for(i in 1:nind){
first.breed[i] <- min(c(which(Y[i,] == 3),which(Y[i,] == 4),which(Y[i,] == 5)),(nyear+1))
}
for(i in 1:nind){
for(t in first[i]:nyear){
if(Y[i,t] == 1){
z.start[i,t] <- NA
}else if (Y[i,t] == 2){
if(first.breed[i]<t){
z.start[i,t] <- 5
}else z.start[i,t] <- 2
}else if (Y[i,t] == 3){
z.start[i,t] <- NA
}else if (Y[i,t] == 4){
z.start[i,t] <- NA
}else if (Y[i,t] == 5){
z.start[i,t] <- 4
}else if (Y[i,t] == 6){
if(first.breed[i]<t){
z.start[i,t] <- 4
}else z.start[i,t] <- 2
}
}
}
for(i in 1:nind){
for(t in first[i]:nyear){
if(t < first.breed[i]){
if(age[i,t] > 14 & age[i,t]<nyear){
z.start[i,t] <- 4
}
}
}
}
for(i in 1:nind){
z.start[i,first[i]] <- NA
}
z.data <- z.start
for(i in 1:nind){
for(t in first[i]:nyear){
if(Y[i,t] == 1){
z.data[i,t] <- 1
}else if (Y[i,t] == 2){
z.data[i,t] <- NA
}else if (Y[i,t] == 3){
z.data[i,t] <- 3
}else if (Y[i,t] == 4){
z.data[i,t] <- 4
}else z.data[i,t] <- NA
}
}
for(i in 1:nind){
z.data[i,first[i]] <- NA
}
#############################################################
#
# SPECIFY THE MODEL
#
##############################################################
sink("YNAL.ipm.SJC.txt")
cat("
model {
#observed
# |--------------------------------------- Observed event ---------------------------------------|
#true state Juv Loaf-In Breed-In-S Breed-In-F Breed-Out Unobs;
#Juvenile
#Pre-breed
#Breed-S
#Breed-F
#Skip
#Dead
#OBSERVATION MATRIX
for(t in 1:(nyear-1)){
pi[1,t,1]<-0; pi[1,t,2]<-0; pi[1,t,3]<-0; pi[1,t,4]<-0; pi[1,t,5]<-0; pi[1,t,6]<-0;
pi[2,t,1]<-0; pi[2,t,2]<-p[1,1,t]; pi[2,t,3]<-0; pi[2,t,4]<-0; pi[2,t,5]<-0; pi[2,t,6]<-(1-p[1,1,t]);
pi[3,t,1]<-0; pi[3,t,2]<-0; pi[3,t,3]<-p[2,1,t]; pi[3,t,4]<-0; pi[3,t,5]<-p[2,2,t]; pi[3,t,6]<-(1-p[2,1,t]-p[2,2,t]);
pi[4,t,1]<-0; pi[4,t,2]<-p[3,1,t]; pi[4,t,3]<-0; pi[4,t,4]<-p[3,2,t]; pi[4,t,5]<-p[3,3,t]; pi[4,t,6]<-(1-p[3,1,t]-p[3,2,t]-p[3,3,t]);
pi[5,t,1]<-0; pi[5,t,2]<-p[4,1,t]; pi[5,t,3]<-0; pi[5,t,4]<-0; pi[5,t,5]<-0; pi[5,t,6]<-(1-p[4,1,t]);
pi[6,t,1]<-0; pi[6,t,2]<-0; pi[6,t,3]<-0; pi[6,t,4]<-0; pi[6,t,5]<-0; pi[6,t,6]<-1;
p[1,2,t] <- 0;
p[1,3,t] <- 0;
p[2,3,t] <- 0;
p[4,2,t] <- 0;
p[4,3,t] <- 0;
}
#OBSERVATION MODELS AND PRIORS
for(t in 1:(nyear-1)){
p[1,1,t] <- 1/(1+exp(-p.link[1,t]))
p.link[1,t] ~ dnorm(int.p[1],tau.p[1])
p[4,1,t] <- 1/(1+exp(-p.link[2,t]))
p.link[2,t] ~ dnorm(int.p[2],tau.p[2])
}
for(t in 1:nyear.in){
p[2,1,yrs.in[t]] <- 1/(1+exp(-p.link[3,t]))
p.link[3,t] ~ dnorm(int.p[3],tau.p[3])
p[2,2,yrs.in[t]] <- 0
p[3,1,yrs.in[t]] <- exp(p.link[4,t])/(1+exp(p.link[4,t])+exp(p.link[5,t]))
p.link[4,t] ~ dnorm(int.p[4],tau.p[4])
p[3,2,yrs.in[t]] <- exp(p.link[5,t])/(1+exp(p.link[4,t])+exp(p.link[5,t]))
p.link[5,t] ~ dnorm(int.p[5],tau.p[5])
p[3,3,yrs.in[t]] <- 0
}
for(t in 1:nyear.out){
p[2,1,yrs.out[t]] <- exp(p.link[6,t])/(1+exp(p.link[6,t])+exp(p.link[7,t]))
p.link[6,t] ~ dnorm(int.p[6],tau.p[6])
p[2,2,yrs.out[t]] <- exp(p.link[7,t])/(1+exp(p.link[6,t])+exp(p.link[7,t]))
p.link[7,t] ~ dnorm(int.p[7],tau.p[7])
p[3,1,yrs.out[t]] <- exp(p.link[8,t])/(1+exp(p.link[8,t])+exp(p.link[9,t])+exp(p.link[10,t]))
p.link[8,t] ~ dnorm(int.p[8],tau.p[8])
p[3,2,yrs.out[t]] <- exp(p.link[9,t])/(1+exp(p.link[8,t])+exp(p.link[9,t])+exp(p.link[10,t]))
p.link[9,t] ~ dnorm(int.p[9],tau.p[9])
p[3,3,yrs.out[t]] <- exp(p.link[10,t])/(1+exp(p.link[8,t])+exp(p.link[9,t])+exp(p.link[10,t]))
p.link[10,t] ~ dnorm(int.p[10],tau.p[10])
}
for(g in 1:10){
int.p[g] ~ dunif(-15,15)
tau.p[g] <- pow(sigma.p[g],-2)
sigma.p[g] ~ dunif(0,10)
}
#STATE TRANSITION MATRIX
#S = survive
#R = recruit (breed for first time)
#B = breed (breed again)
#F = fledge
for(i in 1:nind){
for(t in 1:(nyear-1)){
S.t[1,t,i,1]<-0; S.t[1,t,i,2]<-S[1,t]; S.t[1,t,i,3]<-0; S.t[1,t,i,4]<-0; S.t[1,t,i,5]<-0; S.t[1,t,i,6]<-1-S[1,t];
S.t[2,t,i,1]<-0; S.t[2,t,i,2]<-S[1,t]*(1-R[i,t]); S.t[2,t,i,3]<-S[1,t]*R[i,t]*F[t]; S.t[2,t,i,4]<-S[1,t]*R[i,t]*(1-F[t]); S.t[2,t,i,5]<-0; S.t[2,t,i,6]<-1-S[1,t];
S.t[3,t,i,1]<-0; S.t[3,t,i,2]<-0; S.t[3,t,i,3]<-S[2,t]*B[t]*F[t]; S.t[3,t,i,4]<-S[2,t]*B[t]*(1-F[t]); S.t[3,t,i,5]<-S[2,t]*(1-B[t]); S.t[3,t,i,6]<-1-S[2,t];
S.t[4,t,i,1]<-0; S.t[4,t,i,2]<-0; S.t[4,t,i,3]<-S[2,t]*B[t]*F[t]; S.t[4,t,i,4]<-S[2,t]*B[t]*(1-F[t]); S.t[4,t,i,5]<-S[2,t]*(1-B[t]); S.t[4,t,i,6]<-1-S[2,t];
S.t[5,t,i,1]<-0; S.t[5,t,i,2]<-0; S.t[5,t,i,3]<-S[2,t]*B[t]*F[t]; S.t[5,t,i,4]<-S[2,t]*B[t]*(1-F[t]); S.t[5,t,i,5]<-S[2,t]*(1-B[t]); S.t[5,t,i,6]<-1-S[2,t];
S.t[6,t,i,1]<-0; S.t[6,t,i,2]<-0; S.t[6,t,i,3]<-0; S.t[6,t,i,4]<-0; S.t[6,t,i,5]<-0; S.t[6,t,i,6]<-1;
}
}
#PROCESS MODELS AND PRIORS
for(t in 1:(nyear-1)){
for(m in 1:2){
S[m,t] <- 1/(1+exp(-S.rand[m,t]))
S.rand[m,t] ~ dnorm(int.S[m],tau.S[m])
}
}
for(m in 1:2){
int.S[m] ~ dunif(-15,15)
tau.S[m] <- pow(sigma.S[m],-2)
sigma.S[m] ~ dunif(0,10)
}
for(i in 1:nind){
for(t in 1:(nyear-1)){
R[i,t] <- R.age[age[i,t]]
}
}
R.age[1] <- 0
R.age[2] <- 0
R.age[3] <- 0
for(g in 4:14){
R.age[g] <- 1/(1+exp(-R.rand[g]))
R.rand[g] ~ dnorm(int.R,tau.R)
}
for(g in 15:34){
R.age[g] <- 0
}
int.R ~ dunif(-15,15)
tau.R <- pow(sigma.R,-2)
sigma.R ~ dunif(0,10)
for(t in 1:(nyear-1)){
B[t] <- 1/(1+exp(-B.rand[t]))
B.rand[t] ~ dnorm(int.B,tau.B)
}
int.B ~ dunif(-15,15)
tau.B <- pow(sigma.B,-2)
sigma.B ~ dunif(0,10)
for(t in 1:(nyear-1)){
F[t] <- 1/(1+exp(-F.rand[t]))
F.rand[t] ~ dnorm(int.F,tau.F)
}
int.F ~ dunif(-15,15)
tau.F <- pow(sigma.F,-2)
sigma.F ~ dunif(0,10)
#LIKELIHOOD
for(i in 1:nind){
z[i,first[i]] <- z.first[i]
for(t in (first[i]+1):nyear){
#state equation
z[i,t] ~ dcat(S.t[z[i,(t-1)],t-1,i,])
#observation equation
Y[i,t] ~ dcat(pi[z[i,t],t-1,])
}
}
###################################################
# Likelihood for IPM
###################################################
for(r in 1:nyear){
nF[r] ~ dnorm(n[1,r],tau.Fl)
nP[r] ~ dnorm(n.breeders[r],tau.Pr)
}
tau.Fl <- 100000
tau.Pr <- pow(sigma.Pr,-2)
sigma.Pr ~ dunif(0,3)
for(i in 1:18){
n[i,1] <- stable[i]
}
n.breeders[1] <- n[16,1] + n[17,1]
for(r in 1:(nyear-1)){
emm[r] ~ dunif(0,5)
}
for(r in 1:(nyear-1)){
### all age and breeding groups
n[1,r+1] <- n[16,r+1] #total fledglings
n[2,r+1] <- n[1,r]*S[1,r]*0.5 #1yr NB - females only
n[3,r+1] <- n[2,r]*S[1,r] #2yr NB
n[4,r+1] <- n[3,r]*S[1,r] #3yr NB
n[5,r+1] <- n[4,r]*S[1,r]*(1-R.age[4]) #4yr NB
n[6,r+1] <- n[5,r]*S[1,r]*(1-R.age[5]) #5yr NB
n[7,r+1] <- n[6,r]*S[1,r]*(1-R.age[6]) #6yr NB
n[8,r+1] <- n[7,r]*S[1,r]*(1-R.age[7]) #7yr NB
n[9,r+1] <- n[8,r]*S[1,r]*(1-R.age[8]) #8yr NB
n[10,r+1] <- n[9,r]*S[1,r]*(1-R.age[9]) #9yr NB
n[11,r+1] <- n[10,r]*S[1,r]*(1-R.age[10]) #10yr NB
n[12,r+1] <- n[11,r]*S[1,r]*(1-R.age[11]) #11yr NB
n[13,r+1] <- n[12,r]*S[1,r]*(1-R.age[12]) #12yr NB
n[14,r+1] <- n[13,r]*S[1,r]*(1-R.age[13]) #13yr NB
n[15,r+1] <- n[14,r]*S[1,r]*(1-R.age[14]) #14yr NB
n.breeders[r+1] <- n[4,r]*S[1,r]*R.age[4] + #Breeders
n[5,r]*S[1,r]*R.age[5] +
n[6,r]*S[1,r]*R.age[6] +
n[7,r]*S[1,r]*R.age[7] +
n[8,r]*S[1,r]*R.age[8] +
n[9,r]*S[1,r]*R.age[9] +
n[10,r]*S[1,r]*R.age[10] +
n[11,r]*S[1,r]*R.age[11] +
n[12,r]*S[1,r]*R.age[12] +
n[13,r]*S[1,r]*R.age[13] +
n[14,r]*S[1,r]*R.age[14] +
n[15,r]*S[1,r]*R.age[15] +
n[16,r]*S[2,r]*B[1] +
n[17,r]*S[2,r]*B[1] +
n[18,r]*S[2,r]*B[2] +
emm[r]
n[16,r+1] <- n.breeders[r+1]*F[r]
n[17,r+1] <- n.breeders[r+1]*(1-F[r])
n[18,r+1] <- n[16,r]*S[2,r]*(1-B[1]) + #Skipped breeders
n[17,r]*S[2,r]*(1-B[1]) +
n[18,r]*S[2,r]*(1-B[2])
}
} # End Model
",fill=TRUE)
sink()
#####################################################################################################################################################
#
# SET UP SIMULATION AND RUN MODEL
#
#####################################################################################################################################################
# DEFINE SPECIFICATIONS FOR RUNNING THE MODEL
# 1. MCMC specification
ni <- 12000
nt <- 1
nb <- 8000
nc <- 3
# 2. Combine all data into a list and specify parameters
dataset <- list (Y=Y,z=z.data,z.first=z.first,first=first,nind=nind,nyear=nyear,
age=age,nyear.in=nyear.in,yrs.in=yrs.in,nyear.out=nyear.out,
yrs.out=yrs.out, nF=nF, nP=nP, stable=stable)
parameters <- c("int.S","sigma.S","R.age","int.R","sigma.R","int.B","sigma.B","int.F",
"sigma.F","n.breeders","sigma.Pr","emm")
# 3. Specify initialisation values
S.rand.st <- matrix(runif(2*(nyear-1),2,3),nrow=2,ncol=nyear-1)
inits <- function(){
list (z=z.start,S.rand=S.rand.st,int.S=runif(2,2,4),sigma.S=runif(2),int.B=runif(1,0,2),sigma.B=runif(1),B.rand=rep(0.8,nyear-1),F.rand=runif(nyear-1),int.F=runif(1,1,3),sigma.F=runif(1))
}
############# RUN THE MODEL ################
beg.time <- Sys.time()
# Call JAGS from R
ipm.YNAL <- jags(data=dataset, inits=inits, parameters.to.save=parameters, "YNAL.ipm.SJC.txt", n.chains = nc, n.thin = nt,n.iter = ni, n.burnin = nb, parallel = TRUE)
Sys.time() - beg.time