-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPRIOR_SENSIBILITY_TEST.r
77 lines (56 loc) · 2.86 KB
/
PRIOR_SENSIBILITY_TEST.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
##########################################################################
#
# ATLANTIC YELLOW NOSED ALBATROSS SURVIVAL - PRIOR SENSIBILITY TEST
#
##########################################################################
# written by Steffen Oppel, December 2020
# motivated by paper Bannan et al 2020 about appropriate use of priors in ecology
# simulate survival and recapture probabilities from specified priors to ensure they cover plausible survival probabilities
### CONVERSION OF PRECISION SPECIFICATION
# in JAGS, precision in the normal distribution is specified by 1/variance
# in R, precision in normal distribution is specified by sqrt(variance)
precconv<-function(x){sqrt(1/x)}
### CREATE DATA FRAME WITH 10000 RANDOM VALUES DRAWN FROM PRIORS
mean.phi.ad <- runif(10000,0.7, 0.97) # uninformative prior for all MONTHLY survival probabilities
lp.phi.ad <- log(mean.phi.ad/(1 - mean.phi.ad)) # logit transformed survival intercept
mean.phi.juv <- runif(10000,0.5, 0.9) # uninformative prior for all MONTHLY survival probabilities
lp.phi.juv <- log(mean.phi.juv/(1 - mean.phi.juv)) # logit transformed survival intercept
sigma.surv <- runif(10000,0, 0.5) # Prior for standard deviation of survival
tau.surv <- sigma.surv^-2
surv.raneff <- rnorm(10000,0, precconv(tau.surv))
mean.p.ad <- runif(10000,0.2, 0.8) # uninformative prior for all MONTHLY survival probabilities
lp.p.ad <- log(mean.p.ad/(1 - mean.p.ad)) # logit transformed survival intercept
#### SPECIFY EQUATION TO CALCULATE ADULT SURVIVAL PROBABILITY FROM PRIORS
FAKEDATA<-data.frame(lp.phi.ad,surv.raneff)
FAKEDATA %>% #full_join(INPUT, by='simul') %>%
mutate(logit_phi=
lp.phi.ad + ### intercept for mean survival
surv.raneff) %>%
mutate(phi=plogis(logit_phi)) %>%
ggplot() + geom_histogram(aes(x=phi))
#### SPECIFY EQUATION TO CALCULATE JUVENILE SURVIVAL PROBABILITY FROM PRIORS
FAKEDATA<-data.frame(lp.phi.juv,surv.raneff)
FAKEDATA %>% #full_join(INPUT, by='simul') %>%
mutate(logit_phi=
lp.phi.juv + ### intercept for mean survival
surv.raneff) %>%
mutate(phi=plogis(logit_phi)) %>%
ggplot() + geom_histogram(aes(x=phi))
#### SPECIFY EQUATION TO CALCULATE RECAPTURE PROBABILITY FROM PRIORS
FAKEDATA<-data.frame(lp.p.ad,surv.raneff)
FAKEDATA %>% #full_join(INPUT, by='simul') %>%
mutate(logit_p=
lp.p.ad + ### intercept for mean survival
surv.raneff) %>%
mutate(p=plogis(logit_p)) %>%
ggplot() + geom_histogram(aes(x=p))
#### SPECIFY EQUATION TO CALCULATE AGE-SPECIFIC RETURN OF JUVENILES
agebeta<-seq(0.8,1.2, 0.01)
mu.p.juv<-seq(-5,-4,0.1)
ages<-1:15
FAKEDATA<-expand.grid(a=ages,b=agebeta,int=mu.p.juv)
FAKEDATA %>% #full_join(INPUT, by='simul') %>%
mutate(logit_p=
int+ a*b/2) %>%
mutate(p=plogis(logit_p)) %>%
ggplot() + geom_histogram(aes(x=p)) + facet_wrap(~a)