-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.bbl
1113 lines (965 loc) · 60.8 KB
/
main.bbl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\begin{thebibliography}{xx}
\harvarditem{Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving,
Isard et~al.}{2016}{abadi2016tensorflow}
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Irving, G., Isard, M. et~al. \harvardyearleft
2016\harvardyearright , {TensorFlow}: A system for large-scale machine
learning., {\em in} `OSDI', Vol.~16, pp.~265--283.
\newline\harvardurl{\url{https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi}}
\harvarditem{Abadi, Chu, Goodfellow, McMahan, Mironov, Talwar \harvardand\
Zhang}{2016}{abadi_deep_2016}
Abadi, M., Chu, A., Goodfellow, I., McMahan, H.~B., Mironov, I., Talwar, K.
\harvardand\ Zhang, L. \harvardyearleft 2016\harvardyearright , `Deep
{Learning} with {Differential} {Privacy}', {\em Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security - CCS'16}
pp.~308--318.
\newblock arXiv: 1607.00133.
\newline\harvardurl{\url{http://arxiv.org/abs/1607.00133}}
\harvarditem[Abadi et~al.]{Abadi, Isard \harvardand\ Murray}{2017}{tensorflow}
Abadi, M., Isard, M. \harvardand\ Murray, D.~G. \harvardyearleft
2017\harvardyearright , `A computational model for {TensorFlow}: an
introduction', {\em Proceedings of the 1st ACM SIGPLAN International Workshop
on Machine Learning and Programming Languages} pp.~1--7.
\newline\harvardurl{\url{http://doi.acm.org/10.1145/3088525.3088527}}
\harvarditem[Ackley et~al.]{Ackley, Hinton \harvardand\
Sejnowski}{1985}{ackley_boltzmann_1985}
Ackley, D.~H., Hinton, G.~E. \harvardand\ Sejnowski, T.~J. \harvardyearleft
1985\harvardyearright , `A learning algorithm for {Boltzmann} machines', {\em
Cognitive science} {\bf 9}(1),~147--169.
\newblock Publisher: Elsevier.
\newline\harvardurl{\url{https://doi.org/10.1016/S0364-0213(85)80012-4}}
\harvarditem[Aiello et~al.]{Aiello, Eckstrand, Fu, Landry \harvardand\
Aboyoun}{2018}{h2o}
Aiello, S., Eckstrand, E., Fu, A., Landry, M. \harvardand\ Aboyoun, P.
\harvardyearleft 2018\harvardyearright , `Machine {Learning} with
\proglang{R} and {H2O}', {\em {H2O} booklet} {\bf 550}.
\newline\harvardurl{\url{https://www.h2o.ai/resources/}}
\harvarditem[Arnold et~al.]{Arnold, Gosling \harvardand\
Holmes}{2005}{arnold2005java}
Arnold, K., Gosling, J. \harvardand\ Holmes, D. \harvardyearleft
2005\harvardyearright , {\em The Java programming language}, Addison Wesley
Professional.
\harvarditem{Auguie}{2017}{gridExtra}
Auguie, B. \harvardyearleft 2017\harvardyearright , {\em gridExtra:
Miscellaneous Functions for "Grid" Graphics}.
\newblock R package version 2.3.
\newline\harvardurl{\url{https://CRAN.R-project.org/package=gridExtra}}
\harvarditem[Azur et~al.]{Azur, Stuart, Frangakis \harvardand\
Leaf}{2011}{mice}
Azur, M.~J., Stuart, E.~A., Frangakis, C. \harvardand\ Leaf, P.~J.
\harvardyearleft 2011\harvardyearright , `Multiple imputation by chained
equations: what is it and how does it work?', {\em International Journal of
Methods in Psychiatric Research} {\bf 20}(1),~40--49.
\newline\harvardurl{\url{https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074241/}}
\harvarditem[Bates et~al.]{Bates, Kornblith, Noack, Bouchet-Valat, Borregaard,
Arslan, White, Kleinschmidt, Lynch, Dunning, Mogensen, Lendle, Aluthge,
pdeffebach, Calderón, Born, Setzler, DuBois, Quinn, Bastide, Anthony~Blaom,
König, Caine, Lin, Ngo, Adenbaum, TagBot \harvardand\ Hein}{2021}{juliaglm}
Bates, D., Kornblith, S., Noack, A., Bouchet-Valat, M., Borregaard, M.~K.,
Arslan, A., White, J.~M., Kleinschmidt, D., Lynch, G., Dunning, I., Mogensen,
P.~K., Lendle, S., Aluthge, D., pdeffebach, Calderón, J. B.~S., Born, B.,
Setzler, B., DuBois, C., Quinn, J., Bastide, P., Anthony~Blaom, P., König,
B., Caine, C., Lin, D., Ngo, H.~Q., Adenbaum, J., TagBot, J. \harvardand\
Hein, L. \harvardyearleft 2021\harvardyearright , `Julia package
\apkg{GLM}'.
\newline\harvardurl{\url{https://zenodo.org/record/4556866}}
\harvarditem[Bates et~al.]{Bates, Lai, Byrne \harvardand\
contributors}{2020}{rcallGithub}
Bates, D., Lai, R., Byrne, S. \harvardand\ contributors \harvardyearleft
2020\harvardyearright , `\proglang{Julia} package {RCall} ({GitHub}
repository)'.
\newline\harvardurl{\url{https://github.com/JuliaInterop/RCall.jl}}
\harvarditem{Bengio}{2012}{bengio2012practical}
Bengio, Y. \harvardyearleft 2012\harvardyearright , Practical recommendations
for gradient-based training of deep architectures, {\em in} G.~Montavon,
G.~B. Orr \harvardand\ K.-R. M{\"u}ller, eds, `Neural networks: Tricks of the
trade', Springer, Berlin, Heidelberg, pp.~437--478.
\newline\harvardurl{\url{https://doi.org/10.1007/978-3-642-35289-8\_26}}
\harvarditem[Bergstra et~al.]{Bergstra, Bardenet, Bengio \harvardand\
Kégl}{2011}{bergstra_algorithms_2011}
Bergstra, J., Bardenet, R., Bengio, Y. \harvardand\ Kégl, B. \harvardyearleft
2011\harvardyearright , Algorithms for {Hyper}-{Parameter} {Optimization},
{\em in} J.~Shawe-Taylor, R.~Zemel, P.~Bartlett, F.~Pereira \harvardand\
K.~Q. Weinberger, eds, `Advances in {Neural} {Information} {Processing}
{Systems}', Vol.~24, Curran Associates, Inc., pp.~2546--2554.
\harvarditem[Besard et~al.]{Besard, Foket \harvardand\
De~Sutter}{2018}{juliagpu}
Besard, T., Foket, C. \harvardand\ De~Sutter, B. \harvardyearleft
2018\harvardyearright , `Effective extensible programming: Unleashing {Julia}
on {GPUs}', {\em IEEE Transactions on Parallel and Distributed Systems} .
\harvarditem[Bezanson et~al.]{Bezanson, Edelman, Karpinski \harvardand\
Shah}{2017}{bezanson2017julia}
Bezanson, J., Edelman, A., Karpinski, S. \harvardand\ Shah, V.~B.
\harvardyearleft 2017\harvardyearright , `Julia: A fresh approach to
numerical computing', {\em SIAM Review} {\bf 59}(1),~65--98.
\newline\harvardurl{\url{http://doi.org/10.1137/141000671}}
\harvarditem{Bland \harvardand\ Altman}{2000}{blandaltmannodds}
Bland, J.~M. \harvardand\ Altman, D.~G. \harvardyearleft 2000\harvardyearright
, `The odds ratio', {\em BMJ} {\bf 320}(7247),~1468.
\newline\harvardurl{\url{https://www.bmj.com/content/320/7247/1468.1}}
\harvarditem[Blei et~al.]{Blei, Kucukelbir \harvardand\
McAuliffe}{2017}{blei_variational_2017}
Blei, D.~M., Kucukelbir, A. \harvardand\ McAuliffe, J.~D. \harvardyearleft
2017\harvardyearright , `Variational inference: a review for statisticians',
{\em Journal of the American statistical Association} {\bf
112}(518),~859--877.
\newblock Publisher: Taylor \& Francis.
\harvarditem[Bonofiglio et~al.]{Bonofiglio, Schumacher \harvardand\
Binder}{2020}{bonofiglio2020}
Bonofiglio, F., Schumacher, M. \harvardand\ Binder, H. \harvardyearleft
2020\harvardyearright , `Recovery of original individual person data ({IPD})
inferences from empirical {IPD} summaries only: {Applications} to distributed
computing under disclosure constraints', {\em Statistics in Medicine} {\bf
39}(8),~1183--1198.
\newline\harvardurl{\url{https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.8470}}
\harvarditem[Bonomi et~al.]{Bonomi, Huang \harvardand\
Ohno-Machado}{2020}{bonomi_privacy_2020}
Bonomi, L., Huang, Y. \harvardand\ Ohno-Machado, L. \harvardyearleft
2020\harvardyearright , `Privacy challenges and research opportunities for
genomic data sharing', {\em Nature Genetics} {\bf 52}(7),~646--654.
\newline\harvardurl{\url{https://doi.org/10.1038/s41588-020-0651-0}}
\harvarditem[Bottou et~al.]{Bottou, Curtis \harvardand\
Nocedal}{2018}{bottou_optimization_2018}
Bottou, L., Curtis, F.~E. \harvardand\ Nocedal, J. \harvardyearleft
2018\harvardyearright , `Optimization methods for large-scale machine
learning', {\em Siam Review} {\bf 60}(2),~223--311.
\newblock Publisher: SIAM.
\newline\harvardurl{\url{https://doi.org/10.1137/16M1080173}}
\harvarditem{Bray}{2017}{jsonspec1}
Bray, T. \harvardyearleft 2017\harvardyearright , {\em The {JavaScript}
{Object} {Notation} ({JSON}) {Data} {Interchange} {Format}}.
\newblock Library Catalog: tools.ietf.org.
\newline\harvardurl{\url{https://tools.ietf.org/html/rfc8259}}
\harvarditem[Brooks et~al.]{Brooks, Gelman, Jones \harvardand\
Meng}{2011}{mcmc_handbook_2011}
Brooks, S., Gelman, A., Jones, G. \harvardand\ Meng, X.-L. \harvardyearleft
2011\harvardyearright , {\em Handbook of Markov Chain Monte Carlo}, CRC
Press.
\harvarditem[Brown et~al.]{Brown, Mann, Ryder, Subbiah, Kaplan, Dhariwal,
Neelakantan, Shyam, Sastry, Askell, Agarwal, Herbert-Voss, Krueger, Henighan,
Child, Ramesh, Ziegler, Wu, Winter, Hesse, Chen, Sigler, Litwin, Gray, Chess,
Clark, Berner, McCandlish, Radford, Sutskever \harvardand\
Amodei}{2020}{gpt3}
Brown, T.~B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S.,
Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler,
D.~M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray,
S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever,
I. \harvardand\ Amodei, D. \harvardyearleft 2020\harvardyearright ,
`Language models are few-shot learners'.
\harvarditem[Budin-Ljøsne et~al.]{Budin-Ljøsne, Burton, Isaeva, Gaye, Turner,
Murtagh, Wallace, Ferretti \harvardand\
Harris}{2015}{budin-ljosne_datashield}
Budin-Ljøsne, I., Burton, P., Isaeva, J., Gaye, A., Turner, A., Murtagh,
M.~J., Wallace, S., Ferretti, V. \harvardand\ Harris, J.~R. \harvardyearleft
2015\harvardyearright , `{DataSHIELD}: {An} {Ethically} {Robust} {Solution}
to {Multiple}-{Site} {Individual}-{Level} {Data} {Analysis}', {\em Public
Health Genomics} {\bf 18}(2),~87--96.
\newline\harvardurl{\url{https://www.karger.com/Article/FullText/368959}}
\harvarditem[Campos et~al.]{Campos, Zimek, Sander, Campello, Micenková,
Schubert, Assent \harvardand\ Houle}{2016}{unsupervised_outlier}
Campos, G.~O., Zimek, A., Sander, J., Campello, R. J. G.~B., Micenková, B.,
Schubert, E., Assent, I. \harvardand\ Houle, M.~E. \harvardyearleft
2016\harvardyearright , `On the evaluation of unsupervised outlier detection:
measures, datasets, and an empirical study', {\em Data Mining and Knowledge
Discovery} {\bf 30}(4),~891--927.
\newline\harvardurl{\url{https://doi.org/10.1007/s10618-015-0444-8}}
\harvarditem{Carreira-Perpinan \harvardand\
Hinton}{2005}{perpinan_contrastive_2005}
Carreira-Perpinan, M.~A. \harvardand\ Hinton, G.~E. \harvardyearleft
2005\harvardyearright , On contrastive divergence learning, {\em in}
`{AISTATS}', Vol.~10, Citeseer, pp.~33--40.
\harvarditem{Chambers}{2016}{chambersExtendingR}
Chambers, J.~M. \harvardyearleft 2016\harvardyearright , {\em The {XR}
Structure for Interfaces}, CRC Press, Boca Raton, Florida, chapter~13,
pp.~259--301.
\harvarditem[Chan et~al.]{Chan, Sahiner, Wagner \harvardand\
Petrick}{1999}{chan_classifier_1999}
Chan, H.-P., Sahiner, B., Wagner, R.~F. \harvardand\ Petrick, N.
\harvardyearleft 1999\harvardyearright , `Classifier design for
computer-aided diagnosis: {Effects} of finite sample size on the mean
performance of classical and neural network classifiers', {\em Medical
Physics} {\bf 26}(12),~2654--2668.
\harvarditem[Chang et~al.]{Chang, Balachandar, Lam, Yi, Brown, Beers, Rosen,
Rubin \harvardand\ Kalpathy-Cramer}{2018}{chang_distributed}
Chang, K., Balachandar, N., Lam, C., Yi, D., Brown, J., Beers, A., Rosen, B.,
Rubin, D.~L. \harvardand\ Kalpathy-Cramer, J. \harvardyearleft
2018\harvardyearright , `Distributed deep learning networks among
institutions for medical imaging', {\em Journal of the American Medical
Informatics Association} pp.~945--954.
\newline\harvardurl{\url{https://doi.org/10.1093/jamia/ocy017}}
\harvarditem[Chen et~al.]{Chen, Rubanova, Bettencourt \harvardand\
Duvenaud}{2019}{chen_neural_2019}
Chen, R. T.~Q., Rubanova, Y., Bettencourt, J. \harvardand\ Duvenaud, D.
\harvardyearleft 2019\harvardyearright , `Neural {Ordinary} {Differential}
{Equations}', {\em arXiv:1806.07366 [cs, stat]} .
\newline\harvardurl{\url{http://arxiv.org/abs/1806.07366}}
\harvarditem[Chen et~al.]{Chen, Li, Li, Lin, Wang, Wang, Xiao, Xu, Zhang
\harvardand\ Zhang}{2015}{mxnet}
Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang,
C. \harvardand\ Zhang, Z. \harvardyearleft 2015\harvardyearright , `{MXNet}:
{A} {Flexible} and {Efficient} {Machine} {Learning} {Library} for
{Heterogeneous} {Distributed} {Systems}', {\em arXiv:1512.01274 [cs]} .
\newline\harvardurl{\url{http://arxiv.org/abs/1512.01274}}
\harvarditem[Cho et~al.]{Cho, Ilin \harvardand\ Raiko}{2011}{cho2011improved}
Cho, K., Ilin, A. \harvardand\ Raiko, T. \harvardyearleft
2011\harvardyearright , `Improved learning of {Gaussian-Bernoulli} restricted
{Boltzmann} machines', {\em Artificial Neural Networks and Machine
Learning--ICANN 2011} pp.~10--17.
\newline\harvardurl{\url{https://doi.org/10.1007/978-3-642-21735-7_2}}
\harvarditem[Choi et~al.]{Choi, Biswal, Malin, Duke, Stewart \harvardand\
Sun}{2017}{choi_generating_2017}
Choi, E., Biswal, S., Malin, B., Duke, J., Stewart, W.~F. \harvardand\ Sun, J.
\harvardyearleft 2017\harvardyearright , Generating {Multi}-label {Discrete}
{Patient} {Records} using {Generative} {Adversarial} {Networks}, {\em in}
`Proceedings of {Machine} {Learning} for {Healthcare} 2017', Northeastern
University, Boston, Massachusetts, p.~21.
\newline\harvardurl{\url{http://proceedings.mlr.press/v68/choi17a.html}}
\harvarditem{Cohn}{2018}{cohn_ai_2018}
Cohn, G. \harvardyearleft 2018\harvardyearright , `{AI} {Art} at
{Christie}’s {Sells} for \$432,500', {\em The New York Times} .
\newline\harvardurl{\url{https://www.nytimes.com/2018/10/25/arts/design/ai-art-sold-christies.html}}
\harvarditem{Curry}{1944}{gradientdescent}
Curry, H.~B. \harvardyearleft 1944\harvardyearright , `The method of steepest
descent for non-linear minimization problems', {\em Quarterly of Applied
Mathematics} {\bf 2}(3),~258--261.
\newline\harvardurl{\url{https://doi.org/10.1090/qam/10667}}
\harvarditem{Diestel}{2016}{diestelgraph}
Diestel, R. \harvardyearleft 2016\harvardyearright , {\em Graph Theory}, 5
edn, Springer-Verlag, Heidelberg, Germany.
\harvarditem[Ding et~al.]{Ding, Condon \harvardand\
Shah}{2018}{ding_interpretable_2018}
Ding, J., Condon, A. \harvardand\ Shah, S.~P. \harvardyearleft
2018\harvardyearright , `Interpretable dimensionality reduction of single
cell transcriptome data with deep generative models', {\em Nature
Communications} {\bf 9}(1),~2002.
\newline\harvardurl{\url{https://www.nature.com/articles/s41467-018-04368-5}}
\harvarditem{Dinur \harvardand\ Nissim}{2003}{dinur_revealing_2003}
Dinur, I. \harvardand\ Nissim, K. \harvardyearleft 2003\harvardyearright ,
Revealing information while preserving privacy, {\em in} `Proceedings of the
twenty-second {ACM} {SIGMOD}-{SIGACT}-{SIGART} symposium on {Principles} of
database systems', {PODS} '03, Association for Computing Machinery, New York,
NY, USA, pp.~202--210.
\newline\harvardurl{\url{https://doi.org/10.1145/773153.773173}}
\harvarditem[Doiron et~al.]{Doiron, Burton, Marcon, Gaye, Wolffenbuttel,
Perola, Stolk, Foco, Minelli, Waldenberger, Holle, Kvaløy, Hillege, Tassé,
Ferretti \harvardand\ Fortier}{2013}{doiron_datashield_2013}
Doiron, D., Burton, P., Marcon, Y., Gaye, A., Wolffenbuttel, B. H.~R., Perola,
M., Stolk, R.~P., Foco, L., Minelli, C., Waldenberger, M., Holle, R.,
Kvaløy, K., Hillege, H.~L., Tassé, A.-M., Ferretti, V. \harvardand\
Fortier, I. \harvardyearleft 2013\harvardyearright , `Data harmonization and
federated analysis of population-based studies: the {BioSHaRE} project', {\em
Emerging Themes in Epidemiology} {\bf 10}(1),~12.
\newline\harvardurl{\url{https://doi.org/10.1186/1742-7622-10-12}}
\harvarditem[Doiron et~al.]{Doiron, Marcon, Fortier, Burton \harvardand\
Ferretti}{2017}{opal}
Doiron, D., Marcon, Y., Fortier, I., Burton, P. \harvardand\ Ferretti, V.
\harvardyearleft 2017\harvardyearright , `Software {Application} {Profile}:
{Opal} and {Mica}: open-source software solutions for epidemiological data
management, harmonization and dissemination', {\em International Journal of
Epidemiology} {\bf 46}(5),~1372--1378.
\newline\harvardurl{\url{https://doi.org/10.1093/ije/dyx180}}
\harvarditem{Dowle \harvardand\ Srinivasan}{2020}{datatable}
Dowle, M. \harvardand\ Srinivasan, A. \harvardyearleft 2020\harvardyearright ,
{\em data.table: Extension of \inlinecode{data.frame}}.
\newblock R package version 1.13.4.
\newline\harvardurl{\url{https://CRAN.R-project.org/package=data.table}}
\harvarditem{Drees}{2009}{darch}
Drees, M. \harvardyearleft 2009\harvardyearright , {Implementierung} und
{Analyse} von tiefen {Architekturen} in {R}, Master's thesis, Fachhochschule
Dortmund, Germany.
\harvarditem{Dwork}{2008}{dwork_differential_2008}
Dwork, C. \harvardyearleft 2008\harvardyearright , Differential {Privacy}: {A}
{Survey} of {Results}, {\em in} M.~Agrawal, D.~Du, Z.~Duan \harvardand\
A.~Li, eds, `Theory and {Applications} of {Models} of {Computation}', Lecture
{Notes} in {Computer} {Science}, Springer, Berlin, Heidelberg, pp.~1--19.
\newline\harvardurl{\url{https://doi.org/10.1007/978-3-540-79228-4_1}}
\harvarditem[Eisen et~al.]{Eisen, Spellman, Brown \harvardand\
Botstein}{1998}{eisen_cluster_1998}
Eisen, M.~B., Spellman, P.~T., Brown, P.~O. \harvardand\ Botstein, D.
\harvardyearleft 1998\harvardyearright , `Cluster analysis and display of
genome-wide expression patterns', {\em Proceedings of the National Academy of
Sciences} {\bf 95}(25),~14863--14868.
\newblock Publisher: National Academy of Sciences, Section: Biological
Sciences.
\newline\harvardurl{\url{https://www.pnas.org/content/95/25/14863}}
\harvarditem{Faraway}{2002}{faraway_regression}
Faraway, J.~J. \harvardyearleft 2002\harvardyearright , {\em Practical
regression and {ANOVA} using {R}}, University of Michigan.
\newblock Available from
\url{https://cran.r-project.org/doc/contrib/Faraway-PRA.pdf}.
\harvarditem[Gaye et~al.]{Gaye, Marcon, Isaeva, LaFlamme, Turner, Jones,
Minion, Boyd, Newby, Nuotio, Wilson, Butters, Murtagh, Demir, Doiron,
Giepmans, Wallace, Budin-Ljøsne, Schmidt, Boffetta, Boniol, Bota, Carter,
deKlerk, Dibben, Francis, Hiekkalinna, Hveem, Kvaløy, Millar, Perry, Peters,
Phillips, Popham, Raab, Reischl, Sheehan, Waldenberger, Perola, Heuvel,
Macleod, Knoppers, Stolk, Fortier, Harris, Woffenbuttel, Murtagh, Ferretti
\harvardand\ Burton}{2014}{gaye_datashield}
Gaye, A., Marcon, Y., Isaeva, J., LaFlamme, P., Turner, A., Jones, E.~M.,
Minion, J., Boyd, A.~W., Newby, C.~J., Nuotio, M.-L., Wilson, R., Butters,
O., Murtagh, B., Demir, I., Doiron, D., Giepmans, L., Wallace, S.~E.,
Budin-Ljøsne, I., Schmidt, C.~O., Boffetta, P., Boniol, M., Bota, M.,
Carter, K.~W., deKlerk, N., Dibben, C., Francis, R.~W., Hiekkalinna, T.,
Hveem, K., Kvaløy, K., Millar, S., Perry, I.~J., Peters, A., Phillips,
C.~M., Popham, F., Raab, G., Reischl, E., Sheehan, N., Waldenberger, M.,
Perola, M., Heuvel, E. v.~d., Macleod, J., Knoppers, B.~M., Stolk, R.~P.,
Fortier, I., Harris, J.~R., Woffenbuttel, B.~H., Murtagh, M.~J., Ferretti, V.
\harvardand\ Burton, P.~R. \harvardyearleft 2014\harvardyearright ,
`{DataSHIELD}: taking the analysis to the data, not the data to the
analysis', {\em International Journal of Epidemiology} {\bf
43}(6),~1929--1944.
\newline\harvardurl{\url{http://ije.oxfordjournals.org/content/43/6/1929}}
\harvarditem{Geman \harvardand\ Geman}{1984}{gibbssamplingorig}
Geman, S. \harvardand\ Geman, D. \harvardyearleft 1984\harvardyearright ,
`Stochastic relaxation, {Gibbs} distributions, and the {Bayesian} restoration
of images', {\em IEEE Transactions on Pattern Analysis and Machine
Intelligence} {\bf PAMI-6}(6),~721--741.
\newblock Conference Name: IEEE Transactions on Pattern Analysis and Machine
Intelligence.
\newline\harvardurl{\url{https://doi.org/10.1109/TPAMI.1984.4767596}}
\harvarditem{{\em GNU General Public License}}{2007}{gplv3}
{\em GNU General Public License} \harvardyearleft 2007\harvardyearright .
\newline\harvardurl{\url{http://www.gnu.org/licenses/gpl.html}}
\harvarditem[Goncalves et~al.]{Goncalves, Ray, Soper, Stevens, Coyle
\harvardand\ Sales}{2020}{goncalves}
Goncalves, A., Ray, P., Soper, B., Stevens, J., Coyle, L. \harvardand\ Sales,
A.~P. \harvardyearleft 2020\harvardyearright , `Generation and evaluation of
synthetic patient data', {\em BMC Medical Research Methodology} {\bf
20},~1--40.
\newblock Publisher: Springer.
\newline\harvardurl{\url{https://doi.org/10.1186/s12874-020-00977-1}}
\harvarditem[Goodfellow et~al.]{Goodfellow, Bengio \harvardand\
Courville}{2016}{goodfellow_deep_2016}
Goodfellow, I., Bengio, Y. \harvardand\ Courville, A. \harvardyearleft
2016\harvardyearright , {\em Deep {Learning}}, MIT Press.
\newline\harvardurl{\url{http://www.deeplearningbook.org}}
\harvarditem[Goodfellow et~al.]{Goodfellow, Pouget-Abadie, Mirza, Xu,
Warde-Farley, Ozair, Courville \harvardand\
Bengio}{2014}{goodfellow_generative_2014}
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A. \harvardand\ Bengio, Y. \harvardyearleft
2014\harvardyearright , Generative {Adversarial} {Nets}, {\em in}
Z.~Ghahramani, M.~Welling, C.~Cortes, N.~D. Lawrence \harvardand\ K.~Q.
Weinberger, eds, `Advances in {Neural} {Information} {Processing} {Systems}
27', Curran Associates, Inc., pp.~2672--2680.
\newline\harvardurl{\url{https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf}}
\harvarditem[Gruendner et~al.]{Gruendner, Prokosch, Schindler, Lenz
\harvardand\ Binder}{2019}{gruendner}
Gruendner, J., Prokosch, H.-U., Schindler, S., Lenz, S. \harvardand\ Binder, H.
\harvardyearleft 2019\harvardyearright , `A {Queue}-{Poll} {Extension} and
{DataSHIELD}: {Standardised}, {Monitored}, {Indirect} and {Secure} {Access}
to {Sensitive} {Data}.', {\em Studies in health technology and informatics}
{\bf 258},~115--119.
\harvarditem[Harris et~al.]{Harris, Millman, van~der Walt, Gommers, Virtanen,
Cournapeau, Wieser, Taylor, Berg, Smith, Kern, Picus, Hoyer, van Kerkwijk,
Brett, Haldane, del R{'{\i}}o, Wiebe, Peterson, G{'{e}}rard-Marchant,
Sheppard, Reddy, Weckesser, Abbasi, Gohlke \harvardand\
Oliphant}{2020}{numpy}
Harris, C.~R., Millman, K.~J., van~der Walt, S.~J., Gommers, R., Virtanen, P.,
Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.~J., Kern, R.,
Picus, M., Hoyer, S., van Kerkwijk, M.~H., Brett, M., Haldane, A., del
R{'{\i}}o, J.~F., Wiebe, M., Peterson, P., G{'{e}}rard-Marchant, P.,
Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C. \harvardand\
Oliphant, T.~E. \harvardyearleft 2020\harvardyearright , `Array programming
with {NumPy}', {\em Nature} {\bf 585}(7825),~357--362.
\newline\harvardurl{\url{https://doi.org/10.1038/s41586-020-2649-2}}
\harvarditem[Hastie et~al.]{Hastie, Tibshirani \harvardand\
Friedman}{2009}{hastie_elements}
Hastie, T., Tibshirani, R. \harvardand\ Friedman, J. \harvardyearleft
2009\harvardyearright , {\em The elements of statistical learning: data
mining, inference, and prediction}, Springer series in statistics, 2 edn,
Springer.
\harvarditem[Hayes et~al.]{Hayes, Melis, Danezis \harvardand\
Cristofaro}{2019}{hayes_logan_2019}
Hayes, J., Melis, L., Danezis, G. \harvardand\ Cristofaro, E.~D.
\harvardyearleft 2019\harvardyearright , `{LOGAN}: {Membership} {Inference}
{Attacks} {Against} {Generative} {Models}', {\em Proceedings on Privacy
Enhancing Technologies} {\bf 2019}(1),~133--152.
\newline\harvardurl{\url{https://doi.org/10.2478/popets-2019-0008}}
\harvarditem[He et~al.]{He, Zhang, Ren \harvardand\ Sun}{2015}{resnet}
He, K., Zhang, X., Ren, S. \harvardand\ Sun, J. \harvardyearleft
2015\harvardyearright , `Deep residual learning for image recognition', {\em
arXiv preprint arXiv:1512.03385} .
\harvarditem[Hess et~al.]{Hess, Hackenberg \harvardand\
Binder}{2020}{hess_exploring_2020}
Hess, M., Hackenberg, M. \harvardand\ Binder, H. \harvardyearleft
2020\harvardyearright , `Exploring generative deep learning for omics data
using log-linear models', {\em Bioinformatics} {\bf 36}(20),~5045--5053.
\newline\harvardurl{\url{https://doi.org/10.1093/bioinformatics/btaa623}}
\harvarditem[Hess et~al.]{Hess, Lenz, Bl{\"a}tte, Bullinger \harvardand\
Binder}{2017}{hess2017partitioned}
Hess, M., Lenz, S., Bl{\"a}tte, T.~J., Bullinger, L. \harvardand\ Binder, H.
\harvardyearleft 2017\harvardyearright , `Partitioned learning of deep
{Boltzmann} machines for {SNP} data', {\em Bioinformatics} {\bf
33}(20),~3173--3180.
\newline\harvardurl{\url{https://doi.org/10.1093/bioinformatics/btx408}}
\harvarditem{Hinton}{2002}{cdorig}
Hinton, G.~E. \harvardyearleft 2002\harvardyearright , `Training products of
experts by minimizing {Contrastive} {Divergence}', {\em Neural Computation}
{\bf 14}(8),~1771--1800.
\newblock Publisher: MIT Press.
\newline\harvardurl{\url{https://doi.org/10.1162/089976602760128018}}
\harvarditem{Hinton}{2012}{hinton_practical_2012}
Hinton, G.~E. \harvardyearleft 2012\harvardyearright , A practical guide to
training restricted {Boltzmann} machines, {\em in} G.~Montavon, G.~B. Orr
\harvardand\ K.-R. Müller, eds, `Neural {Networks}: {Tricks} of the {Trade}:
{Second} {Edition}', Springer Nature, pp.~599--619.
\newline\harvardurl{\url{https://doi.org/10.1007/978-3-642-35289-8_32}}
\harvarditem{Hinton \harvardand\ Salakhutdinov}{2006}{hinton_reducing_2006}
Hinton, G.~E. \harvardand\ Salakhutdinov, R.~R. \harvardyearleft
2006\harvardyearright , `Reducing the dimensionality of data with neural
networks', {\em Science} {\bf 313}(5786),~504--507.
\newline\harvardurl{\url{http://science.sciencemag.org/content/313/5786/504}}
\harvarditem{Hinton \harvardand\ Sejnowski}{1999}{sejnowski_unsupervised_1999}
Hinton, G. \harvardand\ Sejnowski, T.~J. \harvardyearleft
1999\harvardyearright , {\em Unsupervised {Learning}: {Foundations} of
{Neural} {Computation}}, MIT Press.
\harvarditem{Howie \harvardand\ Marchini}{2015}{impute_1000_genomes}
Howie, B. \harvardand\ Marchini, J. \harvardyearleft 2015\harvardyearright ,
`1,000 {Genomes} haplotypes - {Phase} 3 integrated variant set release in
{NCBI} build 37 (hg19) coordinates'.
\newline\harvardurl{\url{https://mathgen.stats.ox.ac.uk/impute/1000GP\_Phase3.html}}
\harvarditem[Howie et~al.]{Howie, Donnelly \harvardand\
Marchini}{2009}{impute2}
Howie, B.~N., Donnelly, P. \harvardand\ Marchini, J. \harvardyearleft
2009\harvardyearright , `A flexible and accurate genotype imputation method
for the next generation of genome-wide association studies', {\em PLoS Genet}
{\bf 5}(6),~e1000529.
\newblock Publisher: Public Library of Science.
\harvarditem[Huber et~al.]{Huber, Carey, Gentleman, Anders, Carlson, Carvalho,
Bravo, Davis, Gatto, Girke, Gottardo, Hahne, Hansen, Irizarry, Lawrence,
Love, MacDonald, Obenchain, {Ole's}, {Pag`es}, Reyes, Shannon, Smyth,
Tenenbaum, Waldron \harvardand\ Morgan}{2015}{bioconductor}
Huber, W., Carey, V.~J., Gentleman, R., Anders, S., Carlson, M., Carvalho,
B.~S., Bravo, H.~C., Davis, S., Gatto, L., Girke, T., Gottardo, R., Hahne,
F., Hansen, K.~D., Irizarry, R.~A., Lawrence, M., Love, M.~I., MacDonald, J.,
Obenchain, V., {Ole's}, A.~K., {Pag`es}, H., Reyes, A., Shannon, P., Smyth,
G.~K., Tenenbaum, D., Waldron, L. \harvardand\ Morgan, M. \harvardyearleft
2015\harvardyearright , `{O}rchestrating high-throughput genomic analysis
with {B}ioconductor', {\em Nature Methods} {\bf 12}(2),~115--121.
\newline\harvardurl{\url{https://doi.org/10.1038/nmeth.3252}}
\harvarditem{IEEE}{1985}{floatingpointstandard}
IEEE \harvardyearleft 1985\harvardyearright , `{IEEE} standard for binary
floating-point arithmetic', {\em ANSI/IEEE Std 754-1985} pp.~1--20.
\newline\harvardurl{\url{https://doi.org/10.1109/IEEESTD.1985.82928}}
\harvarditem{Innes}{2018}{flux}
Innes, M. \harvardyearleft 2018\harvardyearright , `Flux: {Elegant} machine
learning with \proglang{Julia}.', {\em Journal of Open Source Software} {\bf
3}(25),~602.
\newline\harvardurl{\url{https://doi.org/10.21105/joss.00602}}
\harvarditem{{ISO/IEC}}{1998}{cppstandard}
{ISO/IEC} \harvardyearleft 1998\harvardyearright , {\em {ISO International
Standard ISO/IEC 14882:1998}: {Programming} language --- {C++}},
International Organization for Standardization (ISO), Geneva, Switzerland.
\harvarditem[Jones et~al.]{Jones, Arthur, Nagy, Gowda, Godisemo, Holy,
Mattriks, Noack, Sengupta, Darakananda, Leblanc, Dunning, Fischer, Chudzicki,
Piibeleht, Yu, Breloff, Kleinschmidt, Mellnik, Verzani, inkyu, Innes,
Huchette, Bauman, Hyatt, Forsyth, Borje, Saba, Coalson \harvardand\
Pelenitsyn}{2018}{gadfly}
Jones, D.~C., Arthur, B., Nagy, T., Gowda, S., Godisemo, Holy, T., Mattriks,
Noack, A., Sengupta, A., Darakananda, D., Leblanc, S., Dunning, I., Fischer,
K., Chudzicki, D., Piibeleht, M., Yu, Y., Breloff, T., Kleinschmidt, D.,
Mellnik, A., Verzani, J., inkyu, Innes, M.~J., Huchette, J., Bauman, M.,
Hyatt, K., Forsyth, J., Borje, G., Saba, E., Coalson, C. \harvardand\
Pelenitsyn, A. \harvardyearleft 2018\harvardyearright ,
`{GiovineItalia}/{Gadfly.jl}: Crafty statistical graphics for {Julia}'.
\newline\harvardurl{\url{https://doi.org/10.5281/zenodo.1924781}}
\harvarditem{{Julia Computing, Inc.}}{2020}{juliadbGithub}
{Julia Computing, Inc.} \harvardyearleft 2020\harvardyearright ,
`\proglang{Julia} package {JuliaDB} ({GitHub} repository)'.
\newblock Version 0.13.0.
\newline\harvardurl{\url{https://github.com/JuliaComputing/JuliaDB.jl}}
\harvarditem{{Julia Data collaborators}}{2020}{juliaDataFramesGithub}
{Julia Data collaborators} \harvardyearleft 2020\harvardyearright ,
`\proglang{Julia} package {DataFrames} ({GitHub} repository)'.
\newblock original-date: 2012-07-11T18:00:09Z.
\newline\harvardurl{\url{https://github.com/JuliaData/DataFrames.jl}}
\harvarditem{Kifer \harvardand\ Machanavajjhala}{2011}{kifer_no_2011}
Kifer, D. \harvardand\ Machanavajjhala, A. \harvardyearleft
2011\harvardyearright , No free lunch in data privacy, {\em in} `Proceedings
of the 2011 {ACM} {SIGMOD} {International} {Conference} on {Management} of
data', {SIGMOD} '11, Association for Computing Machinery, New York, NY, USA,
pp.~193--204.
\newline\harvardurl{\url{https://doi.org/10.1145/1989323.1989345}}
\harvarditem{Kingma \harvardand\ Welling}{2014}{Kingma2013}
Kingma, D.~P. \harvardand\ Welling, M. \harvardyearleft 2014\harvardyearright
, Auto-encoding variational bayes, {\em in} Y.~Bengio \harvardand\ Y.~LeCun,
eds, `2nd International Conference on Learning Representations ({ICLR}),
Conference Track Proceedings'.
\newline\harvardurl{\url{https://arxiv.org/abs/1312.6114}}
\harvarditem{Krizhevsky}{2009}{krizhevsky2009tinyimagesthesis}
Krizhevsky, A. \harvardyearleft 2009\harvardyearright , Learning multiple
layers of features from tiny images, Master's thesis, University of Toronto,
Canada.
\newline\harvardurl{\url{https://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf}}
\harvarditem{LeCun}{2019{\em a}}{lecun_dlhardware}
LeCun, Y. \harvardyearleft 2019{\em a}\harvardyearright , 1.1 {Deep}
{Learning} {Hardware}: {Past}, {Present}, and {Future}, {\em in} `2019 {IEEE}
{International} {Solid}-{State} {Circuits} {Conference} - ({ISSCC})',
pp.~12--19.
\newblock ISSN: 2376-8606.
\newline\harvardurl{\url{http://doi.org/10.1109/ISSCC.2019.8662396}}
\harvarditem{LeCun}{2019{\em b}}{lecun_selfsupervised_2019}
LeCun, Y. \harvardyearleft 2019{\em b}\harvardyearright , `Facebook post about
self-supervised learning'.
\newline\harvardurl{\url{https://www.facebook.com/722677142/posts/10155934004262143/}}
\harvarditem[LeCun et~al.]{LeCun, Bengio \harvardand\
Hinton}{2015}{lecun_deep_learning_2015}
LeCun, Y., Bengio, Y. \harvardand\ Hinton, G. \harvardyearleft
2015\harvardyearright , `Deep learning', {\em Nature} {\bf
521}(7553),~436--444.
\newblock Number: 7553 Publisher: Nature Publishing Group.
\newline\harvardurl{\url{https://www.nature.com/articles/nature14539}}
\harvarditem{Lenz, Hackenberg \harvardand\ Binder}{2021}{juliaconnector_2021}
Lenz, S., Hackenberg, M. \harvardand\ Binder, H. \harvardyearleft
2021\harvardyearright , `The {JuliaConnectoR}: a functionally oriented
interface for integrating {Julia} in {R}', {\em arXiv:2005.06334 [cs, stat]}
.
\newline\harvardurl{\url{http://arxiv.org/abs/2005.06334}}
\harvarditem{Lenz, Hess \harvardand\ Binder}{2021}{dsdbm}
Lenz, S., Hess, M. \harvardand\ Binder, H. \harvardyearleft
2021\harvardyearright , `Deep generative models in {DataSHIELD}', {\em BMC
Medical Research Methodology} {\bf 21}(1),~64.
\newline\harvardurl{\url{https://doi.org/10.1186/s12874-021-01237-6}}
\harvarditem{Li}{2019}{JuliaCallPaper}
Li, C. \harvardyearleft 2019\harvardyearright , `{JuliaCall}: an \proglang{R}
package for seamless integration between \proglang{R} and \proglang{Julia}',
{\em Journal of Open Source Software} {\bf 4}(35),~1284.
\newline\harvardurl{\url{https://doi.org/10.21105/joss.01284}}
\harvarditem[Li et~al.]{Li, Li \harvardand\
Venkatasubramanian}{2007}{li_t-closeness:_2007}
Li, N., Li, T. \harvardand\ Venkatasubramanian, S. \harvardyearleft
2007\harvardyearright , t-{Closeness}: {Privacy} {Beyond} k-{Anonymity} and
l-{Diversity}, {\em in} `2007 {IEEE} 23rd {International} {Conference} on
{Data} {Engineering}', pp.~106--115.
\harvarditem[Li et~al.]{Li, Qardaji, Su, Wu \harvardand\
Yang}{2013}{li_membership_2013}
Li, N., Qardaji, W., Su, D., Wu, Y. \harvardand\ Yang, W. \harvardyearleft
2013\harvardyearright , Membership privacy: a unifying framework for privacy
definitions, {\em in} `Proceedings of the 2013 {ACM} {SIGSAC} conference on
{Computer} \& communications security', {CCS} '13, Association for Computing
Machinery, New York, NY, USA, pp.~889--900.
\newline\harvardurl{\url{https://doi.org/10.1145/2508859.2516686}}
\harvarditem[Luraschi et~al.]{Luraschi, Kuo, Ushey, Allaire, Macedo, Falaki,
Wang, Zhang, Li, Hajnala, Szymkiewicz, Davis, {RStudio, Inc.} \harvardand\
{The Apache Software Foundation}}{2020}{sparklyr}
Luraschi, J., Kuo, K., Ushey, K., Allaire, J., Macedo, S., Falaki, H., Wang,
L., Zhang, A., Li, Y., Hajnala, J., Szymkiewicz, M., Davis, W., {RStudio,
Inc.} \harvardand\ {The Apache Software Foundation} \harvardyearleft
2020\harvardyearright , {\em \apkg{sparklyr}: \proglang{R} {Interface} for
{Apache} {Spark}}.
\newblock \proglang{R}~package version~1.5.2.
\newline\harvardurl{\url{https://CRAN.R-project.org/package=sparklyr}}
\harvarditem[Machanavajjhala et~al.]{Machanavajjhala, Kifer, Gehrke
\harvardand\ Venkitasubramaniam}{2007}{machanavajjhala_l-diversity_2007}
Machanavajjhala, A., Kifer, D., Gehrke, J. \harvardand\ Venkitasubramaniam, M.
\harvardyearleft 2007\harvardyearright , `\textit{{L}}-diversity: {Privacy}
beyond \textit{k}-anonymity', {\em ACM Transactions on Knowledge Discovery
from Data} {\bf 1}(1),~3--es.
\newline\harvardurl{\url{https://doi.org/10.1145/1217299.1217302}}
\harvarditem{Malmaud \harvardand\ White}{2018}{tensorflowjl}
Malmaud, J. \harvardand\ White, L. \harvardyearleft 2018\harvardyearright ,
`{TensorFlow}.jl: {An} {Idiomatic} {Julia} {Front} {End} for {TensorFlow}',
{\em Journal of Open Source Software} {\bf 3}(31),~1002.
\newline\harvardurl{\url{https://joss.theoj.org/papers/10.21105/joss.01002}}
\harvarditem{Manrique‐Vallier \harvardand\
Hu}{2018}{manriquevallier_bayesian_2018}
Manrique‐Vallier, D. \harvardand\ Hu, J. \harvardyearleft
2018\harvardyearright , `Bayesian non-parametric generation of fully
synthetic multivariate categorical data in the presence of structural zeros',
{\em Journal of the Royal Statistical Society: Series A (Statistics in
Society)} {\bf 181}(3),~635--647.
\newline\harvardurl{\url{https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssa.12352}}
\harvarditem[Martens et~al.]{Martens, Chattopadhya, Pitassi \harvardand\
Zemel}{2013}{martens_representational_2013}
Martens, J., Chattopadhya, A., Pitassi, T. \harvardand\ Zemel, R.
\harvardyearleft 2013\harvardyearright , On the {Representational}
{Efficiency} of {Restricted} {Boltzmann} {Machines}, {\em in} C.~J.~C.
Burges, L.~Bottou, M.~Welling, Z.~Ghahramani \harvardand\ K.~Q. Weinberger,
eds, `Advances in {Neural} {Information} {Processing} {Systems}', Vol.~26,
Curran Associates, Inc.
\newline\harvardurl{\url{https://proceedings.neurips.cc/paper/2013/file/7bb060764a818184ebb1cc0d43d382aa-Paper.pdf}}
\harvarditem{{Massachusetts Institute of Technology}}{1988}{mitlicense}
{Massachusetts Institute of Technology} \harvardyearleft 1988\harvardyearright
, `{MIT} license'.
\newline\harvardurl{\url{https://opensource.org/licenses/MIT}}
\harvarditem{Masters \harvardand\ Luschi}{2018}{masters_revisiting_2018}
Masters, D. \harvardand\ Luschi, C. \harvardyearleft 2018\harvardyearright ,
`Revisiting {Small} {Batch} {Training} for {Deep} {Neural} {Networks}', {\em
arXiv:1804.07612 [cs, stat]} .
\newline\harvardurl{\url{http://arxiv.org/abs/1804.07612}}
\harvarditem{McCoy \harvardand\ Wu}{2014}{isingmodel}
McCoy, B.~M. \harvardand\ Wu, T.~T. \harvardyearleft 2014\harvardyearright ,
{\em The Two-Dimensional {Ising} Model}, 2 edn, Courier Corporation.
\harvarditem{McCulloch \harvardand\ Pitts}{1943}{mcculloch_logical_1943}
McCulloch, W.~S. \harvardand\ Pitts, W. \harvardyearleft 1943\harvardyearright
, `A logical calculus of the ideas immanent in nervous activity', {\em The
bulletin of mathematical biophysics} {\bf 5}(4),~115--133.
\newline\harvardurl{\url{https://doi.org/10.1007/BF02478259}}
\harvarditem{{M}c{K}inney}{2010}{pandas}
{M}c{K}inney, W. \harvardyearleft 2010\harvardyearright , {D}ata {S}tructures
for {S}tatistical {C}omputing in {P}ython, {\em in} {S}t\'efan van~der {W}alt
\harvardand\ {J}arrod {M}illman, eds, `{P}roceedings of the 9th {P}ython in
{S}cience {C}onference', pp.~56 -- 61.
\newline\harvardurl{\url{http://doi.org/10.25080/Majora-92bf1922-00a}}
\harvarditem[Midha et~al.]{Midha, Singh, Palvia \harvardand\
Kshetri}{2010}{midha_improving_2010}
Midha, V., Singh, R., Palvia, P. \harvardand\ Kshetri, N. \harvardyearleft
2010\harvardyearright , `Improving {Open} {Source} {Software} {Maintenance}',
{\em Journal of Computer Information Systems} {\bf 50}(3),~81--90.
\newblock Publisher: Taylor \& Francis.
\newline\harvardurl{\url{https://www.tandfonline.com/doi/abs/10.1080/08874417.2010.11645410}}
\harvarditem[Min et~al.]{Min, Lee \harvardand\ Yoon}{2017}{min_deep_2017}
Min, S., Lee, B. \harvardand\ Yoon, S. \harvardyearleft 2017\harvardyearright
, `Deep learning in bioinformatics', {\em Briefings in Bioinformatics} {\bf
18}(5),~851--869.
\newline\harvardurl{\url{https://doi.org/10.1093/bib/bbw068}}
\harvarditem{Mirza \harvardand\ Osindero}{2014}{cgan}
Mirza, M. \harvardand\ Osindero, S. \harvardyearleft 2014\harvardyearright ,
`Conditional {Generative} {Adversarial} {Nets}', {\em arXiv:1411.1784 [cs,
stat]} .
\newblock arXiv: 1411.1784.
\newline\harvardurl{\url{http://arxiv.org/abs/1411.1784}}
\harvarditem{Müller \harvardand\ Wickham}{2020}{tibble}
Müller, K. \harvardand\ Wickham, H. \harvardyearleft 2020\harvardyearright ,
{\em tibble: Simple Data Frames}.
\newblock R package version 3.0.4.
\newline\harvardurl{\url{https://CRAN.R-project.org/package=tibble}}
\harvarditem{{MongoDB, Inc.}}{2009}{bsonspec}
{MongoDB, Inc.} \harvardyearleft 2009\harvardyearright , `{BSON} ({Binary}
{JSON}) serialization'.
\newline\harvardurl{\url{http://bsonspec.org/}}
\harvarditem{Murtagh \harvardand\ Contreras}{2012}{hclust}
Murtagh, F. \harvardand\ Contreras, P. \harvardyearleft 2012\harvardyearright
, `Algorithms for hierarchical clustering: an overview', {\em Wiley
Interdiscip. Rev. Data Min. Knowl. Discov.} {\bf 2},~86--97.
\harvarditem{Nelder \harvardand\ Wedderburn}{1972}{glm_1972}
Nelder, J.~A. \harvardand\ Wedderburn, R.~W. \harvardyearleft
1972\harvardyearright , `Generalized linear models', {\em Journal of the
Royal Statistical Society: Series A (General)} {\bf 135}(3),~370--384.
\newblock Publisher: Wiley Online Library.
\harvarditem[Nowok et~al.]{Nowok, Raab \harvardand\ Dibben}{2016}{synthpop}
Nowok, B., Raab, G.~M. \harvardand\ Dibben, C. \harvardyearleft
2016\harvardyearright , `synthpop: {Bespoke} {Creation} of {Synthetic} {Data}
in {R}', {\em Journal of Statistical Software} {\bf 74}(1),~1--26.
\newline\harvardurl{\url{https://www.jstatsoft.org/index.php/jss/article/view/v074i11}}
\harvarditem[Nußberger et~al.]{Nußberger, Boesel, Lenz, Binder \harvardand\
Hess}{2020}{nussberger_synthetic_2020}
Nußberger, J., Boesel, F., Lenz, S., Binder, H. \harvardand\ Hess, M.
\harvardyearleft 2020\harvardyearright , `Synthetic observations from deep
generative models and binary omics data with limited sample size', {\em
Briefings in Bioinformatics} .
\newline\harvardurl{\url{https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbaa226/5917048}}
\harvarditem[Oluwagbemigun et~al.]{Oluwagbemigun, Foerster, Watkins, Fouhy,
Stanton, Bergmann, Boeing \harvardand\
Nöthlings}{2020}{oluwagbemigun_datashield_2020}
Oluwagbemigun, K., Foerster, J., Watkins, C., Fouhy, F., Stanton, C., Bergmann,
M.~M., Boeing, H. \harvardand\ Nöthlings, U. \harvardyearleft
2020\harvardyearright , `Dietary {Patterns} {Are} {Associated} with {Serum}
{Metabolite} {Patterns} and {Their} {Association} {Is} {Influenced} by {Gut}
{Bacteria} among {Older} {German} {Adults}', {\em The Journal of Nutrition}
{\bf 150}(1),~149--158.
\newline\harvardurl{\url{https://doi.org/10.1093/jn/nxz194}}
\harvarditem[Pastorino et~al.]{Pastorino, Bishop, Crozier, Granström, Kordas,
Küpers, O'Brien, Polanska, Sauder, Zafarmand, Wilson, Agyemang, Burton,
Cooper, Corpeleijn, Dabelea, Hanke, Inskip, McAuliffe, Olsen, Vrijkotte,
Brage, Kennedy, O'Gorman, Scherer, Wijndaele, Wareham, Desoye \harvardand\
Ong}{2019}{pastorino_datashield_2019}
Pastorino, S., Bishop, T., Crozier, S.~R., Granström, C., Kordas, K., Küpers,
L.~K., O'Brien, E.~C., Polanska, K., Sauder, K.~A., Zafarmand, M.~H., Wilson,
R.~C., Agyemang, C., Burton, P.~R., Cooper, C., Corpeleijn, E., Dabelea, D.,
Hanke, W., Inskip, H.~M., McAuliffe, F.~M., Olsen, S.~F., Vrijkotte, T.~G.,
Brage, S., Kennedy, A., O'Gorman, D., Scherer, P., Wijndaele, K., Wareham,
N.~J., Desoye, G. \harvardand\ Ong, K.~K. \harvardyearleft
2019\harvardyearright , `Associations between maternal physical activity in
early and late pregnancy and offspring birth size: remote federated
individual level meta-analysis from eight cohort studies', {\em BJOG: An
International Journal of Obstetrics \& Gynaecology} {\bf 126}(4),~459--470.
\newline\harvardurl{\url{https://doi.org/10.1111/1471-0528.15542}}
\harvarditem[Paszke et~al.]{Paszke, Gross, Massa, Lerer, Bradbury, Chanan,
Killeen, Lin, Gimelshein, Antiga, Desmaison, Kopf, Yang, DeVito, Raison,
Tejani, Chilamkurthy, Steiner, Fang, Bai \harvardand\
Chintala}{2019}{pytorch}
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J. \harvardand\ Chintala, S. \harvardyearleft 2019\harvardyearright ,
{PyTorch}: An imperative style, high-performance deep learning library, {\em
in} H.~Wallach, H.~Larochelle, A.~Beygelzimer, F.~d\textquotesingle
Alch\'{e}-Buc, E.~Fox \harvardand\ R.~Garnett, eds, `Advances in Neural
Information Processing Systems 32', Curran Associates, Inc., pp.~8024--8035.
\newline\harvardurl{\url{https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf}}
\harvarditem[Pedregosa et~al.]{Pedregosa, Varoquaux, Gramfort, Michel, Thirion,
Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos,
Cournapeau, Brucher, Perrot \harvardand\ Duchesnay}{2011}{scikit-learn}
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M. \harvardand\ Duchesnay,
E. \harvardyearleft 2011\harvardyearright , `Scikit-learn: Machine learning
in {P}ython', {\em Journal of Machine Learning Research} {\bf
12},~2825--2830.
\newline\harvardurl{\url{http://jmlr.org/papers/v12/pedregosa11a.html}}
\harvarditem{Postel}{1981}{tcpspec}
Postel, J. \harvardyearleft 1981\harvardyearright , {\em Transmission
{Control} {Protocol}}.
\newblock Library Catalog: tools.ietf.org.
\newline\harvardurl{\url{https://tools.ietf.org/html/rfc793}}
\harvarditem[Prokosch et~al.]{Prokosch, Acker, Bernarding, Binder, Boeker,
Boerries, Daumke, Ganslandt, Hesser, Höning, Neumaier, Marquardt, Renz,
Rothkötter, Schade-Brittinger, Schmücker, Schüttler, Sedlmayr, Serve,
Sohrabi \harvardand\ Storf}{2018}{prokosch_miracum_2018}
Prokosch, H.-U., Acker, T., Bernarding, J., Binder, H., Boeker, M., Boerries,
M., Daumke, P., Ganslandt, T., Hesser, J., Höning, G., Neumaier, M.,
Marquardt, K., Renz, H., Rothkötter, H.-J., Schade-Brittinger, C.,
Schmücker, P., Schüttler, J., Sedlmayr, M., Serve, H., Sohrabi, K.
\harvardand\ Storf, H. \harvardyearleft 2018\harvardyearright , `{MIRACUM}:
{Medical} {Informatics} in {Research} and {Care} in {University} {Medicine}',
{\em Methods of Information in Medicine} {\bf 57}(S 1),~e82--e91.
\newline\harvardurl{\url{http://www.thieme-connect.de/DOI/DOI?10.3414/ME17-02-0025}}
\harvarditem[Quick et~al.]{Quick, Holan \harvardand\
Wikle}{2018}{quick_generating_2018}
Quick, H., Holan, S.~H. \harvardand\ Wikle, C.~K. \harvardyearleft
2018\harvardyearright , `Generating partially synthetic geocoded public use
data with decreased disclosure risk by using differential smoothing', {\em
Journal of the Royal Statistical Society: Series A (Statistics in Society)}
{\bf 181}(3),~649--661.
\newline\harvardurl{\url{https://doi.org/10.1111/rssa.12360}}
\harvarditem[Quinn et~al.]{Quinn, Anthoff, Kamiński, Arakaki, Bouchet-Valat,
Papp, Arslan, ExpandingMan, Revels, Schouten, Robinson, Ferris, Oskin,
Sharma, Aluthge, Davies, Hanson, Kalybek, Lin, Dunn, Adenbaum, Day,
Calderón, {Julia TagBot}, Samuel, Vertechi, Zwitch, Huttunen \harvardand\
strickek}{2021}{tables.jl}
Quinn, J., Anthoff, D., Kamiński, B., Arakaki, T., Bouchet-Valat, M., Papp,
T.~K., Arslan, A., ExpandingMan, Revels, J., Schouten, R., Robinson, N.,
Ferris, A., Oskin, A., Sharma, A., Aluthge, D., Davies, E., Hanson, E.,
Kalybek, E., Lin, I., Dunn, J., Adenbaum, J., Day, J., Calderón, J. B.~S.,
{Julia TagBot}, Samuel, O., Vertechi, P., Zwitch, R., Huttunen, A.
\harvardand\ strickek \harvardyearleft 2021\harvardyearright ,
`{JuliaData/Tables.jl}: An interface for tables in {Julia}'.
\newline\harvardurl{\url{https://doi.org/10.5281/zenodo.4682614}}
\harvarditem[Quinn et~al.]{Quinn, {{JuliaData} contributors} \harvardand\
{Julia Computing, Inc.}}{2020}{juliacsvGithub}
Quinn, J., {{JuliaData} contributors} \harvardand\ {Julia Computing, Inc.}
\harvardyearleft 2020\harvardyearright , `\proglang{Julia} package {CSV}
({GitHub} repository)'.
\newblock Version 0.8.4.
\newline\harvardurl{\url{https://github.com/JuliaData/CSV.jl}}
\harvarditem{{R Core Team}}{2018}{rAdmin}
{R Core Team} \harvardyearleft 2018\harvardyearright , {\em \proglang{R}
Installation and Administration}.
\newblock \proglang{R} version 3.6.3.
\newline\harvardurl{\url{https://cran.r-project.org/doc/manuals/r-release/R-admin.pdf}}
\harvarditem[Rajkomar et~al.]{Rajkomar, Dean \harvardand\
Kohane}{2019}{machine_learning_review_nejm}
Rajkomar, A., Dean, J. \harvardand\ Kohane, I. \harvardyearleft
2019\harvardyearright , `Machine {Learning} in {Medicine}', {\em New England
Journal of Medicine} {\bf 380}(14),~1347--1358.
\newline\harvardurl{\url{https://www.nejm.org/doi/full/10.1056/NEJMra1814259}}
\harvarditem[Ranzato et~al.]{Ranzato, Boureau, Chopra \harvardand\
LeCun}{2007}{ranzato_ebm}
Ranzato, M., Boureau, Y.-L., Chopra, S. \harvardand\ LeCun, Y.
\harvardyearleft 2007\harvardyearright , A unified energy-based framework for
unsupervised learning, {\em in} `Artificial {Intelligence} and {Statistics}',
pp.~371--379.
\harvarditem{{Regents of the University of California}}{1999}{bsd3}
{Regents of the University of California} \harvardyearleft
1999\harvardyearright , `The 3-{Clause} {BSD} {License}'.
\newline\harvardurl{\url{https://opensource.org/licenses/BSD-3-Clause}}
\harvarditem{{RStudio Team}}{2020}{rstudio}
{RStudio Team} \harvardyearleft 2020\harvardyearright , {\em RStudio:
Integrated Development Environment for R}, RStudio, PBC, Boston, MA.
\newline\harvardurl{\url{http://www.rstudio.com/}}
\harvarditem[Rumbaugh et~al.]{Rumbaugh, Jacobson \harvardand\ Booch}{1999}{uml}
Rumbaugh, J., Jacobson, I. \harvardand\ Booch, G. \harvardyearleft
1999\harvardyearright , {\em The unified modeling language reference manual},
Addison-Wesley.
\harvarditem{Rumbold \harvardand\ Pierscionek}{2017}{rumbold_effect_2017}
Rumbold, J. M.~M. \harvardand\ Pierscionek, B. \harvardyearleft
2017\harvardyearright , `The {Effect} of the {General} {Data} {Protection}
{Regulation} on {Medical} {Research}', {\em Journal of Medical Internet
Research} {\bf 19}(2),~e7108.
\newline\harvardurl{\url{https://www.jmir.org/2017/2/e47}}
\harvarditem[Rumelhart et~al.]{Rumelhart, Hinton \harvardand\
Williams}{1986}{backpropagation}
Rumelhart, D.~E., Hinton, G.~E. \harvardand\ Williams, R.~J. \harvardyearleft
1986\harvardyearright , `Learning representations by back-propagating
errors', {\em Nature} {\bf 323}(6088),~533--536.
\newline\harvardurl{\url{https://www.nature.com/articles/323533a0}}
\harvarditem{Sagi \harvardand\ Rokach}{2018}{ensemble_learning_survey_2018}
Sagi, O. \harvardand\ Rokach, L. \harvardyearleft 2018\harvardyearright ,
`Ensemble learning: {A} survey', {\em {WIREs} Data Mining and Knowledge
Discovery} {\bf 8}(4),~e1249.
\newline\harvardurl{\url{https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1249}}
\harvarditem{Salakhutdinov}{2008}{salakhutdinov2008learning}
Salakhutdinov, R. \harvardyearleft 2008\harvardyearright , Learning and
evaluating {Boltzmann} machines, Technical Report UTML TR 2008-002,
Department of Computer Science, University of Toronto.
\newline\harvardurl{\url{http://www.cs.toronto.edu/~rsalakhu/papers/bm.pdf}}
\harvarditem{Salakhutdinov}{2015}{salakhutdinov2015generativemodels}
Salakhutdinov, R. \harvardyearleft 2015\harvardyearright , `Learning deep
generative models', {\em Annual Review of Statistics and Its Application}
{\bf 2},~361--385.
\newline\harvardurl{\url{https://doi.org/10.1146/annurev-statistics-010814-020120}}
\harvarditem{Salakhutdinov \harvardand\ Hinton}{2009}{salakhutdinov2009DBMs}
Salakhutdinov, R. \harvardand\ Hinton, G. \harvardyearleft
2009\harvardyearright , Deep {Boltzmann} machines, {\em in} `Artificial
Intelligence and Statistics', pp.~448--455.
\newline\harvardurl{\url{http://proceedings.mlr.press/v5/salakhutdinov09a.html}}
\harvarditem{Salakhutdinov \harvardand\ Hinton}{2012}{sala2012anefficient}
Salakhutdinov, R. \harvardand\ Hinton, G. \harvardyearleft
2012\harvardyearright , `An efficient learning procedure for deep {Boltzmann}
machines', {\em Neural Computation} {\bf 24}(8),~1967--2006.
\newline\harvardurl{\url{http://doi.org/10.1162/NECO\_a\_00311}}
\harvarditem{Sammut \harvardand\ Webb}{2010}{ml_encyclopedia}
Sammut, C. \harvardand\ Webb, G.~I. \harvardyearleft 2010\harvardyearright ,
{\em Encyclopedia of {Machine} {Learning}}, Springer Science \& Business
Media.
\harvarditem{Shabani \harvardand\
Marelli}{2019}{shabani_re-identifiability_2019}
Shabani, M. \harvardand\ Marelli, L. \harvardyearleft 2019\harvardyearright ,
`Re-identifiability of genomic data and the {GDPR}', {\em EMBO reports} {\bf
20}(6),~e48316.
\newblock Publisher: John Wiley \& Sons, Ltd.
\newline\harvardurl{\url{http://doi.org/10.15252/embr.201948316}}
\harvarditem{Smolensky}{1986}{smolensky1986foundations}
Smolensky, P. \harvardyearleft 1986\harvardyearright , `Foundations of harmony
theory: Cognitive dynamical systems and the subsymbolic theory of information
processing', {\em Parallel distributed processing: Explorations in the
microstructure of cognition} {\bf 1},~191--281.
\harvarditem[Sohn et~al.]{Sohn, Lee \harvardand\ Yan}{2015}{cvae}
Sohn, K., Lee, H. \harvardand\ Yan, X. \harvardyearleft 2015\harvardyearright
, Learning {Structured} {Output} {Representation} using {Deep} {Conditional}
{Generative} {Models}, {\em in} C.~Cortes, N.~Lawrence, D.~Lee, M.~Sugiyama
\harvardand\ R.~Garnett, eds, `Proceedings of the 28th International
Conference on Neural Information Processing Systems - Volume 2', Vol.~28 of
{\em NIPS'15}, MIT Press, Cambridge, MA, USA, p.~3483–3491.
\newline\harvardurl{\url{https://dl.acm.org/doi/abs/10.5555/2969442.2969628}}
\harvarditem{Srivastava \harvardand\
Salakhutdinov}{2012}{srivastava2012multimodal}
Srivastava, N. \harvardand\ Salakhutdinov, R.~R. \harvardyearleft
2012\harvardyearright , Multimodal learning with deep {Boltzmann} machines,
{\em in} F.~Pereira, C.~J.~C. Burges, L.~Bottou \harvardand\ K.~Q.
Weinberger, eds, `Advances in neural information processing systems',
Vol.~25, Curran Associates, Inc., pp.~2222--2230.
\newline\harvardurl{\url{https://proceedings.neurips.cc/paper/2012/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf}}
\harvarditem{Sweeney}{2012}{sweeney_k_anonymity_2012}
Sweeney, L. \harvardyearleft 2012\harvardyearright , `{k}-anonymity: A model
for protecting privacy', {\em International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems} .
\newblock Publisher: World Scientific Publishing Company.
\newline\harvardurl{\url{https://doi.org/10.1142/S0218488502001648}}
\harvarditem{{The 1000 Genomes Project Consortium}}{2012}{1000genomes}
{The 1000 Genomes Project Consortium} \harvardyearleft 2012\harvardyearright ,
`An integrated map of genetic variation from 1,092 human genomes', {\em
Nature} {\bf 491}(7422),~56--65.
\newline\harvardurl{\url{http://dx.doi.org/10.1038/nature11632}}
\harvarditem{{The Theano Development Team}}{2016}{theano}
{The Theano Development Team} \harvardyearleft 2016\harvardyearright ,
`Theano: {A} {Python} framework for fast computation of mathematical
expressions', {\em arXiv:1605.02688 [cs]} .
\newline\harvardurl{\url{http://arxiv.org/abs/1605.02688}}
\harvarditem{Theis}{2011}{deepbelief_github}
Theis, L. \harvardyearleft 2011\harvardyearright , `Code for training and
evaluating restricted boltzmann machines ({RBMs}) and deep belief networks
({DBNs})'.
\newline\harvardurl{\url{https://github.com/lucastheis/deepbelief}}
\harvarditem[Theis et~al.]{Theis, Gerwinn, Sinz \harvardand\
Bethge}{2011}{theis2011deepbelief}
Theis, L., Gerwinn, S., Sinz, F. \harvardand\ Bethge, M. \harvardyearleft