Skip to content

Latest commit

 

History

History
575 lines (383 loc) · 15.2 KB

README.md

File metadata and controls

575 lines (383 loc) · 15.2 KB
About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

Binomial Random Numbers

NPM version Build Status Coverage Status

Binomial distributed pseudorandom numbers.

Usage

To use in Observable,

binomial = require( 'https://cdn.jsdelivr.net/gh/stdlib-js/random-base-binomial@umd/browser.js' )

To vendor stdlib functionality and avoid installing dependency trees for Node.js, you can use the UMD server build:

var binomial = require( 'path/to/vendor/umd/random-base-binomial/index.js' )

To include the bundle in a webpage,

<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/random-base-binomial@umd/browser.js"></script>

If no recognized module system is present, access bundle contents via the global scope:

<script type="text/javascript">
(function () {
    window.binomial;
})();
</script>

binomial( n, p )

Returns a pseudorandom number drawn from a binomial distribution with number of trials n and success probability p.

var r = binomial( 20, 0.8 );
// returns <number>

If n is not a positive integer or p is not a probability, the function returns NaN.

var r = binomial( 1.5, 0.5 );
// returns NaN

r = binomial( 2, 1.5 );
// returns NaN

If n or p is NaN, the function returns NaN.

var r = binomial( NaN, 0.4 );
// returns NaN

r = binomial( 20, NaN );
// returns NaN

binomial.factory( [n, p, ][options] )

Returns a pseudorandom number generator (PRNG) for generating pseudorandom numbers drawn from a binomial distribution.

var rand = binomial.factory();

var r = rand( 20, 0.3 );
// returns <number>

If provided n and p, the returned generator returns random variates from the specified distribution.

// Draws from binomial( 10, 0.8 ):
var rand = binomial.factory( 10, 0.8 );

var r = rand();
// returns <number>

r = rand();
// returns <number>

If not provided n and p, the returned generator requires that both parameters be provided at each invocation.

var rand = binomial.factory();

var r = rand( 20, 0.8 );
// returns <number>

r = rand( 123, 0.21 );
// returns <number>

The function accepts the following options:

  • prng: pseudorandom number generator for generating uniformly distributed pseudorandom numbers on the interval [0,1). If provided, the function ignores both the state and seed options. In order to seed the returned pseudorandom number generator, one must seed the provided prng (assuming the provided prng is seedable).
  • seed: pseudorandom number generator seed.
  • state: a Uint32Array containing pseudorandom number generator state. If provided, the function ignores the seed option.
  • copy: boolean indicating whether to copy a provided pseudorandom number generator state. Setting this option to false allows sharing state between two or more pseudorandom number generators. Setting this option to true ensures that a returned generator has exclusive control over its internal state. Default: true.

To use a custom PRNG as the underlying source of uniformly distributed pseudorandom numbers, set the prng option.

var minstd = require( '@stdlib/random-base-minstd' );

var rand = binomial.factory({
    'prng': minstd.normalized
});

var r = rand( 8, 0.9 );
// returns <number>

To seed a pseudorandom number generator, set the seed option.

var rand1 = binomial.factory({
    'seed': 12345
});

var r1 = rand1( 8, 0.9 );
// returns <number>

var rand2 = binomial.factory( 8, 0.9, {
    'seed': 12345
});

var r2 = rand2();
// returns <number>

var bool = ( r1 === r2 );
// returns true

To return a generator having a specific initial state, set the generator state option.

var rand;
var bool;
var r;
var i;

// Generate pseudorandom numbers, thus progressing the generator state:
for ( i = 0; i < 1000; i++ ) {
    r = binomial( 8, 0.9 );
}

// Create a new PRNG initialized to the current state of `binomial`:
rand = binomial.factory({
    'state': binomial.state
});

// Test that the generated pseudorandom numbers are the same:
bool = ( rand( 8, 0.9 ) === binomial( 8, 0.9 ) );
// returns true

binomial.NAME

The generator name.

var str = binomial.NAME;
// returns 'binomial'

binomial.PRNG

The underlying pseudorandom number generator.

var prng = binomial.PRNG;
// returns <Function>

binomial.seed

The value used to seed binomial().

var rand;
var r;
var i;

// Generate pseudorandom values...
for ( i = 0; i < 100; i++ ) {
    r = binomial( 20, 0.5 );
}

// Generate the same pseudorandom values...
rand = binomial.factory( 20, 0.5, {
    'seed': binomial.seed
});
for ( i = 0; i < 100; i++ ) {
    r = rand();
}

If provided a PRNG for uniformly distributed numbers, this value is null.

var rand = binomial.factory({
    'prng': Math.random
});

var seed = rand.seed;
// returns null

binomial.seedLength

Length of generator seed.

var len = binomial.seedLength;
// returns <number>

If provided a PRNG for uniformly distributed numbers, this value is null.

var rand = binomial.factory({
    'prng': Math.random
});

var len = rand.seedLength;
// returns null

binomial.state

Writable property for getting and setting the generator state.

var r = binomial( 20, 0.8 );
// returns <number>

r = binomial( 20, 0.8 );
// returns <number>

// ...

// Get a copy of the current state:
var state = binomial.state;
// returns <Uint32Array>

r = binomial( 20, 0.8 );
// returns <number>

r = binomial( 20, 0.8 );
// returns <number>

// Reset the state:
binomial.state = state;

// Replay the last two pseudorandom numbers:
r = binomial( 20, 0.8 );
// returns <number>

r = binomial( 20, 0.8 );
// returns <number>

// ...

If provided a PRNG for uniformly distributed numbers, this value is null.

var rand = binomial.factory({
    'prng': Math.random
});

var state = rand.state;
// returns null

binomial.stateLength

Length of generator state.

var len = binomial.stateLength;
// returns <number>

If provided a PRNG for uniformly distributed numbers, this value is null.

var rand = binomial.factory({
    'prng': Math.random
});

var len = rand.stateLength;
// returns null

binomial.byteLength

Size (in bytes) of generator state.

var sz = binomial.byteLength;
// returns <number>

If provided a PRNG for uniformly distributed numbers, this value is null.

var rand = binomial.factory({
    'prng': Math.random
});

var sz = rand.byteLength;
// returns null

binomial.toJSON()

Serializes the pseudorandom number generator as a JSON object.

var o = binomial.toJSON();
// returns { 'type': 'PRNG', 'name': '...', 'state': {...}, 'params': [] }

If provided a PRNG for uniformly distributed numbers, this method returns null.

var rand = binomial.factory({
    'prng': Math.random
});

var o = rand.toJSON();
// returns null

Notes

  • If PRNG state is "shared" (meaning a state array was provided during PRNG creation and not copied) and one sets the generator state to a state array having a different length, the PRNG does not update the existing shared state and, instead, points to the newly provided state array. In order to synchronize PRNG output according to the new shared state array, the state array for each relevant PRNG must be explicitly set.
  • If PRNG state is "shared" and one sets the generator state to a state array of the same length, the PRNG state is updated (along with the state of all other PRNGs sharing the PRNG's state array).

Examples

<!DOCTYPE html>
<html lang="en">
<body>
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/random-base-binomial@umd/browser.js"></script>
<script type="text/javascript">
(function () {

var seed;
var rand;
var i;

// Generate pseudorandom numbers...
for ( i = 0; i < 100; i++ ) {
    console.log( binomial( 20, 0.5 ) );
}

// Create a new pseudorandom number generator...
seed = 1234;
rand = binomial.factory( 10, 0.8, {
    'seed': seed
});
for ( i = 0; i < 100; i++ ) {
    console.log( rand() );
}

// Create another pseudorandom number generator using a previous seed...
rand = binomial.factory( 20, 0.5, {
    'seed': binomial.seed
});
for ( i = 0; i < 100; i++ ) {
    console.log( rand() );
}

})();
</script>
</body>
</html>

References

  • Hörmann, Wolfgang. 1993. "The generation of binomial random variates." Journal of Statistical Computation and Simulation 46 (1-2): 101–10. doi:10.1080/00949659308811496.

See Also


Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.