-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
85 lines (78 loc) · 3.15 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# -*- coding: utf-8 -*-
# @Author : lishouxian
# @Email : gzlishouxian@gmail.com
# @File : main.py
# @Software: VScode
from loguru import logger
from config import use_cuda, cuda_device, configure, mode
from engines.data import DataManager
from engines.utils.setup_seed import setup_seed
from pprint import pprint
import torch
import os
import json
def fold_check(configures):
if configures['checkpoints_dir'] == '':
raise Exception('checkpoints_dir did not set...')
if not os.path.exists(configures['checkpoints_dir']):
print('checkpoints fold not found, creating...')
os.makedirs(configures['checkpoints_dir'])
if __name__ == '__main__':
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
setup_seed(configure['seed'])
fold_check(configure)
log_name = './logs/' + mode + '.log'
logger.add(log_name, encoding='utf-8')
if use_cuda:
if torch.cuda.is_available():
if cuda_device == -1:
device = torch.device('cuda')
else:
device = torch.device(f'cuda:{cuda_device}')
else:
raise ValueError(
"'use_cuda' set to True when cuda is unavailable."
" Make sure CUDA is available or set use_cuda=False."
)
else:
device = 'cpu'
logger.info(f'device: {device}')
data_manager = DataManager(configure, logger=logger)
if mode == 'train':
logger.info(json.dumps(configure, indent=2, ensure_ascii=False))
from engines.train import Train
logger.info('mode: train')
Train(configure, data_manager, device, logger).train()
elif mode == 'interactive_predict':
logger.info(json.dumps(configure, indent=2, ensure_ascii=False))
logger.info('mode: predict_one')
from engines.predict import Predictor
predictor = Predictor(configure, data_manager, device, logger)
predictor.predict_one('warm up')
while True:
logger.info('please input a sentence (enter [exit] to exit.)')
sentence = input()
if sentence == 'exit':
break
logger.info('input:{}'.format(str(sentence)))
result = predictor.predict_one(sentence)
logger.info('putput:{}'.format(str(result)))
pprint(result)
elif mode == 'test':
from engines.predict import Predictor
logger.info(json.dumps(configure, indent=2, ensure_ascii=False))
logger.info('mode: test')
predictor = Predictor(configure, data_manager, device, logger)
predictor.predict_test()
elif mode == 'convert_onnx':
logger.info(json.dumps(configure, indent=2, ensure_ascii=False))
logger.info('mode: convert_onnx')
from engines.predict import Predictor
predictor = Predictor(configure, data_manager, device, logger)
predictor.convert_onnx()
elif mode == 'show_model_info':
logger.info(json.dumps(configure, indent=2, ensure_ascii=False))
logger.info('mode: show_model_info')
from engines.predict import Predictor
predictor = Predictor(configure, data_manager, device, logger)
predictor.show_model_info()