-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_regression.py
43 lines (35 loc) · 1.41 KB
/
demo_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from data import CrowdDataSet
import matplotlib.pyplot as plt
import numpy as np
from data import CrowdDataSet
from data import default_train_transforms, default_exploration_transform
from torchvision import transforms
from utils import get_density_map_gaussian
import torch
loaders = {
"train": CrowdDataSet(
'part_A/train_data', default_train_transforms()
),
"no_normalize": CrowdDataSet(
'part_A/train_data', default_exploration_transform()
),
}
model = torch.load('saved_models/resnet50_den_map')
model.eval()
fg, axs = plt.subplots(3, 3, figsize=(20, 20))
for index, i in enumerate([3, 50, 78]):
x = loaders['no_normalize'][i]
axs[index, 0].imshow(transforms.ToPILImage()(x['image']).convert('RGB'))
axs[index, 0].set_title("Normal Cropped Image", fontsize=15)
dt = loaders['train'][i]
image = dt['image'].to()
gt = dt['gt']
predictions = model(image[None, ...].float())
predictions = predictions.squeeze().data.cpu().numpy()
axs[index, 1].imshow(predictions, cmap=plt.cm.jet)
axs[index, 1].set_title("Produced Density Map\nEstimate: {}".format(np.sum(predictions)/100), fontsize=15)
k = np.zeros((224, 224))
k = get_density_map_gaussian(k, gt, adaptive_mode=False)
axs[index, 2].imshow(k, cmap=plt.cm.jet)
axs[index, 2].set_title('Actual Density Map\nCount: {}'.format(len(gt)), fontsize=15)
fg.savefig('results/resnet50_den_map_demo')