-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathnodes.py
235 lines (204 loc) · 9.87 KB
/
nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# ComfyUI Node for Ultimate SD Upscale by Coyote-A: https://github.com/Coyote-A/ultimate-upscale-for-automatic1111
import logging
import torch
import comfy
from usdu_patch import usdu
from utils import tensor_to_pil, pil_to_tensor
from modules.processing import StableDiffusionProcessing
import modules.shared as shared
from modules.upscaler import UpscalerData
MAX_RESOLUTION = 8192
# The modes available for Ultimate SD Upscale
MODES = {
"Linear": usdu.USDUMode.LINEAR,
"Chess": usdu.USDUMode.CHESS,
"None": usdu.USDUMode.NONE,
}
# The seam fix modes
SEAM_FIX_MODES = {
"None": usdu.USDUSFMode.NONE,
"Band Pass": usdu.USDUSFMode.BAND_PASS,
"Half Tile": usdu.USDUSFMode.HALF_TILE,
"Half Tile + Intersections": usdu.USDUSFMode.HALF_TILE_PLUS_INTERSECTIONS,
}
def USDU_base_inputs():
required = [
("image", ("IMAGE",)),
# Sampling Params
("model", ("MODEL",)),
("positive", ("CONDITIONING",)),
("negative", ("CONDITIONING",)),
("vae", ("VAE",)),
("upscale_by", ("FLOAT", {"default": 2, "min": 0.05, "max": 4, "step": 0.05})),
("seed", ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff})),
("steps", ("INT", {"default": 20, "min": 1, "max": 10000, "step": 1})),
("cfg", ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0})),
("sampler_name", (comfy.samplers.KSampler.SAMPLERS,)),
("scheduler", (comfy.samplers.KSampler.SCHEDULERS,)),
("denoise", ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.01})),
# Upscale Params
("upscale_model", ("UPSCALE_MODEL",)),
("mode_type", (list(MODES.keys()),)),
("tile_width", ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8})),
("tile_height", ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8})),
("mask_blur", ("INT", {"default": 8, "min": 0, "max": 64, "step": 1})),
("tile_padding", ("INT", {"default": 32, "min": 0, "max": MAX_RESOLUTION, "step": 8})),
# Seam fix params
("seam_fix_mode", (list(SEAM_FIX_MODES.keys()),)),
("seam_fix_denoise", ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})),
("seam_fix_width", ("INT", {"default": 64, "min": 0, "max": MAX_RESOLUTION, "step": 8})),
("seam_fix_mask_blur", ("INT", {"default": 8, "min": 0, "max": 64, "step": 1})),
("seam_fix_padding", ("INT", {"default": 16, "min": 0, "max": MAX_RESOLUTION, "step": 8})),
# Misc
("force_uniform_tiles", ("BOOLEAN", {"default": True})),
("tiled_decode", ("BOOLEAN", {"default": False})),
]
optional = []
return required, optional
def prepare_inputs(required: list, optional: list = None):
inputs = {}
if required:
inputs["required"] = {}
for name, type in required:
inputs["required"][name] = type
if optional:
inputs["optional"] = {}
for name, type in optional:
inputs["optional"][name] = type
return inputs
def remove_input(inputs: list, input_name: str):
for i, (n, _) in enumerate(inputs):
if n == input_name:
del inputs[i]
break
def rename_input(inputs: list, old_name: str, new_name: str):
for i, (n, t) in enumerate(inputs):
if n == old_name:
inputs[i] = (new_name, t)
break
class UltimateSDUpscale:
@classmethod
def INPUT_TYPES(s):
required, optional = USDU_base_inputs()
return prepare_inputs(required, optional)
RETURN_TYPES = ("IMAGE",)
FUNCTION = "upscale"
CATEGORY = "image/upscaling"
def upscale(self, image, model, positive, negative, vae, upscale_by, seed,
steps, cfg, sampler_name, scheduler, denoise, upscale_model,
mode_type, tile_width, tile_height, mask_blur, tile_padding,
seam_fix_mode, seam_fix_denoise, seam_fix_mask_blur,
seam_fix_width, seam_fix_padding, force_uniform_tiles, tiled_decode,
custom_sampler=None, custom_sigmas=None):
# Store params
self.tile_width = tile_width
self.tile_height = tile_height
self.mask_blur = mask_blur
self.tile_padding = tile_padding
self.seam_fix_width = seam_fix_width
self.seam_fix_denoise = seam_fix_denoise
self.seam_fix_padding = seam_fix_padding
self.seam_fix_mode = seam_fix_mode
self.mode_type = mode_type
self.upscale_by = upscale_by
self.seam_fix_mask_blur = seam_fix_mask_blur
#
# Set up A1111 patches
#
# Upscaler
# An object that the script works with
shared.sd_upscalers[0] = UpscalerData()
# Where the actual upscaler is stored, will be used when the script upscales using the Upscaler in UpscalerData
shared.actual_upscaler = upscale_model
# Set the batch of images
shared.batch = [tensor_to_pil(image, i) for i in range(len(image))]
# Processing
sdprocessing = StableDiffusionProcessing(
tensor_to_pil(image), model, positive, negative, vae,
seed, steps, cfg, sampler_name, scheduler, denoise, upscale_by, force_uniform_tiles, tiled_decode,
tile_width, tile_height, MODES[self.mode_type], SEAM_FIX_MODES[self.seam_fix_mode],
custom_sampler, custom_sigmas,
)
# Disable logging
logger = logging.getLogger()
old_level = logger.getEffectiveLevel()
logger.setLevel(logging.CRITICAL + 1)
try:
#
# Running the script
#
script = usdu.Script()
processed = script.run(p=sdprocessing, _=None, tile_width=self.tile_width, tile_height=self.tile_height,
mask_blur=self.mask_blur, padding=self.tile_padding, seams_fix_width=self.seam_fix_width,
seams_fix_denoise=self.seam_fix_denoise, seams_fix_padding=self.seam_fix_padding,
upscaler_index=0, save_upscaled_image=False, redraw_mode=MODES[self.mode_type],
save_seams_fix_image=False, seams_fix_mask_blur=self.seam_fix_mask_blur,
seams_fix_type=SEAM_FIX_MODES[self.seam_fix_mode], target_size_type=2,
custom_width=None, custom_height=None, custom_scale=self.upscale_by)
# Return the resulting images
images = [pil_to_tensor(img) for img in shared.batch]
tensor = torch.cat(images, dim=0)
return (tensor,)
finally:
# Restore the original logging level
logger.setLevel(old_level)
class UltimateSDUpscaleNoUpscale(UltimateSDUpscale):
@classmethod
def INPUT_TYPES(s):
required, optional = USDU_base_inputs()
remove_input(required, "upscale_model")
remove_input(required, "upscale_by")
rename_input(required, "image", "upscaled_image")
return prepare_inputs(required, optional)
RETURN_TYPES = ("IMAGE",)
FUNCTION = "upscale"
CATEGORY = "image/upscaling"
def upscale(self, upscaled_image, model, positive, negative, vae, seed,
steps, cfg, sampler_name, scheduler, denoise,
mode_type, tile_width, tile_height, mask_blur, tile_padding,
seam_fix_mode, seam_fix_denoise, seam_fix_mask_blur,
seam_fix_width, seam_fix_padding, force_uniform_tiles, tiled_decode):
upscale_by = 1.0
return super().upscale(upscaled_image, model, positive, negative, vae, upscale_by, seed,
steps, cfg, sampler_name, scheduler, denoise, None,
mode_type, tile_width, tile_height, mask_blur, tile_padding,
seam_fix_mode, seam_fix_denoise, seam_fix_mask_blur,
seam_fix_width, seam_fix_padding, force_uniform_tiles, tiled_decode)
class UltimateSDUpscaleCustomSample(UltimateSDUpscale):
@classmethod
def INPUT_TYPES(s):
required, optional = USDU_base_inputs()
remove_input(required, "upscale_model")
optional.append(("upscale_model", ("UPSCALE_MODEL",)))
optional.append(("custom_sampler", ("SAMPLER",)))
optional.append(("custom_sigmas", ("SIGMAS",)))
return prepare_inputs(required, optional)
RETURN_TYPES = ("IMAGE",)
FUNCTION = "upscale"
CATEGORY = "image/upscaling"
def upscale(self, image, model, positive, negative, vae, upscale_by, seed,
steps, cfg, sampler_name, scheduler, denoise,
mode_type, tile_width, tile_height, mask_blur, tile_padding,
seam_fix_mode, seam_fix_denoise, seam_fix_mask_blur,
seam_fix_width, seam_fix_padding, force_uniform_tiles, tiled_decode,
upscale_model=None,
custom_sampler=None, custom_sigmas=None):
return super().upscale(image, model, positive, negative, vae, upscale_by, seed,
steps, cfg, sampler_name, scheduler, denoise, upscale_model,
mode_type, tile_width, tile_height, mask_blur, tile_padding,
seam_fix_mode, seam_fix_denoise, seam_fix_mask_blur,
seam_fix_width, seam_fix_padding, force_uniform_tiles, tiled_decode,
custom_sampler, custom_sigmas)
# A dictionary that contains all nodes you want to export with their names
# NOTE: names should be globally unique
NODE_CLASS_MAPPINGS = {
"UltimateSDUpscale": UltimateSDUpscale,
"UltimateSDUpscaleNoUpscale": UltimateSDUpscaleNoUpscale,
"UltimateSDUpscaleCustomSample": UltimateSDUpscaleCustomSample
}
# A dictionary that contains the friendly/humanly readable titles for the nodes
NODE_DISPLAY_NAME_MAPPINGS = {
"UltimateSDUpscale": "Ultimate SD Upscale",
"UltimateSDUpscaleNoUpscale": "Ultimate SD Upscale (No Upscale)",
"UltimateSDUpscaleCustomSample": "Ultimate SD Upscale (Custom Sample)"
}