forked from stevenwudi/3DCNN_HMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvdata.py
419 lines (343 loc) · 22.6 KB
/
convdata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
# Copyright (c) 2011, Alex Krizhevsky (akrizhevsky@gmail.com)
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# - Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# - Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
# EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from data import *
import numpy.random as nr
import numpy as n
import random as r
from util import *
class CIFARDataProvider(LabeledMemoryDataProvider):
def __init__(self, data_dir, batch_range, init_epoch=1, init_batchnum=None, dp_params={}, test=False):
LabeledMemoryDataProvider.__init__(self, data_dir, batch_range, init_epoch, init_batchnum, dp_params, test)
self.data_mean = self.batch_meta['data_mean']
self.num_colors = 3
self.img_size = 32
# Subtract the mean from the data and make sure that both data and
# labels are in single-precision floating point.
for d in self.data_dic:
# This converts the data matrix to single precision and makes sure that it is C-ordered
d['data'] = n.require((d['data'] - self.data_mean), dtype=n.single, requirements='C')
d['labels'] = n.require(d['labels'].reshape((1, d['data'].shape[1])), dtype=n.single, requirements='C')
def get_next_batch(self):
epoch, batchnum, datadic = LabeledMemoryDataProvider.get_next_batch(self)
return epoch, batchnum, [datadic['data'], datadic['labels']]
# Returns the dimensionality of the two data matrices returned by get_next_batch
# idx is the index of the matrix.
def get_data_dims(self, idx=0):
return self.img_size**2 * self.num_colors if idx == 0 else 1
# Takes as input an array returned by get_next_batch
# Returns a (numCases, imgSize, imgSize, 3) array which can be
# fed to pylab for plotting.
# This is used by shownet.py to plot test case predictions.
def get_plottable_data(self, data):
return n.require((data + self.data_mean).T.reshape(data.shape[1], 3, self.img_size, self.img_size).swapaxes(1,3).swapaxes(1,2) / 255.0, dtype=n.single)
class CroppedCIFARDataProvider(LabeledMemoryDataProvider):
def __init__(self, data_dir, batch_range=None, init_epoch=1, init_batchnum=None, dp_params=None, test=False):
LabeledMemoryDataProvider.__init__(self, data_dir, batch_range, init_epoch, init_batchnum, dp_params, test)
self.border_size = dp_params['crop_border']
self.inner_size = 32 - self.border_size*2
self.multiview = dp_params['multiview_test'] and test
self.num_views = 5*2
self.data_mult = self.num_views if self.multiview else 1
self.num_colors = 3
for d in self.data_dic:
d['data'] = n.require(d['data'], requirements='C')
d['labels'] = n.require(n.tile(d['labels'].reshape((1, d['data'].shape[1])), (1, self.data_mult)), requirements='C')
self.cropped_data = [n.zeros((self.get_data_dims(), self.data_dic[0]['data'].shape[1]*self.data_mult), dtype=n.single) for x in xrange(2)]
self.batches_generated = 0
self.data_mean = self.batch_meta['data_mean'].reshape((3,32,32))[:,self.border_size:self.border_size+self.inner_size,self.border_size:self.border_size+self.inner_size].reshape((self.get_data_dims(), 1))
def get_next_batch(self):
epoch, batchnum, datadic = LabeledMemoryDataProvider.get_next_batch(self)
cropped = self.cropped_data[self.batches_generated % 2]
self.__trim_borders(datadic['data'], cropped)
cropped -= self.data_mean
self.batches_generated += 1
return epoch, batchnum, [cropped, datadic['labels']]
def get_data_dims(self, idx=0):
return self.inner_size**2 * 3 if idx == 0 else 1
# Takes as input an array returned by get_next_batch
# Returns a (numCases, imgSize, imgSize, 3) array which can be
# fed to pylab for plotting.
# This is used by shownet.py to plot test case predictions.
def get_plottable_data(self, data):
return n.require((data + self.data_mean).T.reshape(data.shape[1], 3, self.inner_size, self.inner_size).swapaxes(1,3).swapaxes(1,2) / 255.0, dtype=n.single)
def __trim_borders(self, x, target):
y = x.reshape(3, 32, 32, x.shape[1])
if self.test: # don't need to loop over cases
if self.multiview:
start_positions = [(0,0), (0, self.border_size*2),
(self.border_size, self.border_size),
(self.border_size*2, 0), (self.border_size*2, self.border_size*2)]
end_positions = [(sy+self.inner_size, sx+self.inner_size) for (sy,sx) in start_positions]
for i in xrange(self.num_views/2):
pic = y[:,start_positions[i][0]:end_positions[i][0],start_positions[i][1]:end_positions[i][1],:]
target[:,i * x.shape[1]:(i+1)* x.shape[1]] = pic.reshape((self.get_data_dims(),x.shape[1]))
target[:,(self.num_views/2 + i) * x.shape[1]:(self.num_views/2 +i+1)* x.shape[1]] = pic[:,:,::-1,:].reshape((self.get_data_dims(),x.shape[1]))
else:
pic = y[:,self.border_size:self.border_size+self.inner_size,self.border_size:self.border_size+self.inner_size, :] # just take the center for now
target[:,:] = pic.reshape((self.get_data_dims(), x.shape[1]))
else:
for c in xrange(x.shape[1]): # loop over cases
startY, startX = nr.randint(0,self.border_size*2 + 1), nr.randint(0,self.border_size*2 + 1)
endY, endX = startY + self.inner_size, startX + self.inner_size
pic = y[:,startY:endY,startX:endX, c]
if nr.randint(2) == 0: # also flip the image with 50% probability
pic = pic[:,:,::-1]
target[:,c] = pic.reshape((self.get_data_dims(),))
class Kaggle_Galaxy_ConvNetDataProvider(LabeledDataProvider_Kaggle_Galaxy):
def __init__(self, data_dir, batch_range, init_epoch=1, init_batchnum=None, dp_params={}, test=False):
LabeledDataProvider_Kaggle_Galaxy.__init__(self, data_dir, batch_range, init_epoch, init_batchnum, dp_params, test)
self.data_mean = self.batch_meta['data_mean']
self.num_colors = 3
self.img_size = 224
#reshape in python must be a tuple....
self.data_mean = self.data_mean.reshape((self.data_mean.shape[0],1))
# Subtract the mean from the data and make sure that both data and
# labels are in single-precision floating point.
#for d in self.data_dic:
# # This converts the data matrix to single precision and makes sure that it is C-ordered
# d['data'] = n.require((d['data'] - self.data_mean), dtype=n.single, requirements='C')
# d['labels'] = n.require(d['targets_all'].T, dtype=n.single, requirements='C')
def get_next_batch(self, training = False):
epoch, batchnum, datadic = LabeledDataProvider_Kaggle_Galaxy.get_next_batch(self)
datadic['data'] = n.require((datadic['data'] - self.data_mean), dtype=n.single, requirements='C')
datadic['labels'] = n.require(datadic['targets_all'].T, dtype=n.single, requirements='C')
#return epoch, batchnum, [datadic['data'], datadic['labels']]
# here we manually enhance the dataset by rotating and mirroring
# sanity check, disappointing
if training:
enhance_number = 3
else:
enhance_number = 5
im_rotated_array= n.empty((enhance_number*datadic['data'].shape[1], datadic['data'].shape[0]),dtype=n.single)
labels = n.empty((enhance_number*datadic['data'].shape[1], datadic['labels'].shape[0]),dtype=n.single)
for k in range(datadic['data'].shape[1]):
im_rotated_array[ k*enhance_number: (k+1)*enhance_number, :] = image_rotate(datadic['data'][:,k], enhance_number, training)
labels[ k*enhance_number: (k+1)*enhance_number, :] = n.tile(datadic['labels'][:,k],(enhance_number, 1))
im_rotated_array = n.require(im_rotated_array.T, dtype=n.single, requirements='C')
labels= n.require(labels.T, dtype=n.single, requirements='C')
return epoch, batchnum, [im_rotated_array, labels], enhance_number
# Returns the dimensionality of the two data matrices returned by get_next_batch
def get_data_dims(self, idx=0):
return self.batch_meta['data_dim'] if idx == 0 else 37
# Takes as input an array returned by get_next_batch
# Returns a (numCases, imgSize, imgSize, 3) array which can be
# fed to pylab for plotting.
# This is used by shownet.py to plot test case predictions.
def get_plottable_data(self, data):
return n.require((data + self.data_mean).T.reshape(data.shape[1], 3, self.img_size, self.img_size).swapaxes(1,3).swapaxes(1,2) / 255.0, dtype=n.single)
class Kaggle_Galaxy_Memory_ConvNetDataProvider(LabeledMemoryDataProvider_Kaggle_Galaxy):
def __init__(self, data_dir, batch_range, init_epoch=1, init_batchnum=None, dp_params={}, test=False):
LabeledMemoryDataProvider_Kaggle_Galaxy.__init__(self, data_dir, batch_range, init_epoch, init_batchnum, dp_params, test)
self.data_mean = self.batch_meta['data_mean']
self.num_colors = 3
self.img_size = 224
#reshape in python must be a tuple....
self.data_mean = self.data_mean.reshape((self.data_mean.shape[0],1))
# Subtract the mean from the data and make sure that both data and
# labels are in single-precision floating point.
for d in self.data_dic:
# This converts the data matrix to single precision and makes sure that it is C-ordered
d['data'] = n.require((d['data'] - self.data_mean), dtype=n.single, requirements='C')
d['labels'] = n.require(d['targets_all'].T, dtype=n.single, requirements='C')
def get_next_batch(self):
epoch, batchnum, datadic = LabeledMemoryDataProvider_Kaggle_Galaxy.get_next_batch(self)
return epoch, batchnum, [datadic['data'], datadic['labels']]
# Returns the dimensionality of the two data matrices returned by get_next_batch
def get_data_dims(self, idx=0):
return self.batch_meta['data_dim'] if idx == 0 else 37
# Takes as input an array returned by get_next_batch
# Returns a (numCases, imgSize, imgSize, 3) array which can be
# fed to pylab for plotting.
# This is used by shownet.py to plot test case predictions.
def get_plottable_data(self, data):
return n.require((data + self.data_mean).T.reshape(data.shape[1], 3, self.img_size, self.img_size).swapaxes(1,3).swapaxes(1,2) / 255.0, dtype=n.single)
class MNIST_ConvNetDataProvider(LabeledMemoryDataProvider_MNIST):
def __init__(self, data_dir, batch_range, init_epoch=1, init_batchnum=None, dp_params={}, test=False):
LabeledMemoryDataProvider_MNIST.__init__(self, data_dir, batch_range, init_epoch, init_batchnum, dp_params, test)
self.data_mean = self.batch_meta['data_mean']
self.num_colors = 1
self.img_size = 28
#reshape in python must be a tuple....
self.data_mean = self.data_mean.reshape((self.data_mean.shape[0],1))
# Subtract the mean from the data and make sure that both data and
# labels are in single-precision floating point.
for d in self.data_dic:
# This converts the data matrix to single precision and makes sure that it is C-ordered
d['data'] = n.require((d['data'] - self.data_mean), dtype=n.single, requirements='C')
d['labels'] = n.require(d['labels'].reshape((1, d['data'].shape[1])), dtype=n.single, requirements='C')
def get_next_batch(self):
epoch, batchnum, datadic = LabeledMemoryDataProvider_MNIST.get_next_batch(self)
return epoch, batchnum, [datadic['data'], datadic['labels']]
# Returns the dimensionality of the two data matrices returned by get_next_batch
def get_data_dims(self, idx=0):
return self.batch_meta['data_dim'] if idx == 0 else 1
# Takes as input an array returned by get_next_batch
# Returns a (numCases, imgSize, imgSize, 3) array which can be
# fed to pylab for plotting.
# This is used by shownet.py to plot test case predictions.
def get_plottable_data(self, data):
return n.require((data + self.data_mean).T.reshape(data.shape[1], 3, self.img_size, self.img_size).swapaxes(1,3).swapaxes(1,2) / 255.0, dtype=n.single)
class AVLETTERS_ConvNetDataProvider(LabeledMemoryDataProvider_AVLETTERS):
def __init__(self, data_dir, batch_range, init_epoch=1, init_batchnum=None, dp_params={}, test=False):
LabeledMemoryDataProvider_AVLETTERS.__init__(self, data_dir, batch_range, init_epoch, init_batchnum, dp_params, test)
self.data_mean = self.batch_meta['data_mean']
self.num_colors = 5
self.img_size = 60
#reshape in python must be a tuple....
self.data_mean = self.data_mean.reshape((self.data_mean.shape[0],1))
# Subtract the mean from the data and make sure that both data and
# labels are in single-precision floating point.
for d in self.data_dic:
# This converts the data matrix to single precision and makes sure that it is C-ordered
d['data'] = n.require((d['data'].T - self.data_mean), dtype=n.single, requirements='C')
d['labels'] = n.require(d['labels'].reshape((1, d['data'].shape[1])), dtype=n.single, requirements='C')
def get_next_batch(self):
epoch, batchnum, datadic = LabeledMemoryDataProvider_AVLETTERS.get_next_batch(self)
return epoch, batchnum, [datadic['data'], datadic['labels']]
# Returns the dimensionality of the two data matrices returned by get_next_batch
def get_data_dims(self, idx=0):
return self.batch_meta['data_dim'] if idx == 0 else 1
# Takes as input an array returned by get_next_batch
# Returns a (numCases, imgSize, imgSize, 3) array which can be
# fed to pylab for plotting.
# This is used by shownet.py to plot test case predictions.
def get_plottable_data(self, data):
return n.require((data + self.data_mean).T.reshape(data.shape[1], 3, self.img_size, self.img_size).swapaxes(1,3).swapaxes(1,2) / 255.0, dtype=n.single)
class CodaLab_MemoryConvNetDataProvider(LabeledDataProvider):
def __init__(self, data_dir, batch_range, init_epoch=1, init_batchnum=None, dp_params={}, test=False):
LabeledDataProvider.__init__(self, data_dir, batch_range, init_epoch, init_batchnum, dp_params, test)
self.data_mean = self.batch_meta['data_mean']
self.num_colors = 4
self.img_size = 90
self.data_dic = []
self.data_mean = self.data_mean.reshape((90*90*4,1))
# uncommment following for the loading all the data into memory (which is bad for big data)
for i in batch_range:
self.data_dic += [unpickle(self.get_data_file_name(i))]
self.data_dic[-1]['data'] = n.require((self.data_dic[-1]['data'] - self.data_mean), dtype=n.single, requirements='C')
mask = (self.data_dic[-1]['data_id'] ==201)
self.data_dic[-1]['data_id'][mask] = 200 #stupid mistakes made by Di Wu
self.data_dic[-1]["labels"] = n.c_[n.require(self.data_dic[-1]['data_id'].T, dtype=n.single)]
#reshape in python must be a tuple....
def get_next_batch(self, training = False):
epoch, batchnum = self.curr_epoch, self.curr_batchnum
self.advance_batch()
bidx = batchnum - self.batch_range[0]
return epoch, batchnum, [self.data_dic[bidx]['data'],self.data_dic[bidx]['labels']]
def get_data_dims(self, idx=0):
return self.batch_meta['data_dim'] if idx == 0 else 1
# Takes as input an array returned by get_next_batch
# Returns a (numCases, imgSize, imgSize, 3) array which can be
# fed to pylab for plotting.
# This is used by shownet.py to plot test case predictions.
def get_plottable_data(self, data):
return n.require((data + self.data_mean).T.reshape(data.shape[1], 3, self.img_size, self.img_size).swapaxes(1,3).swapaxes(1,2) / 255.0, dtype=n.single)
def get_num_classes(self):
# we need to change to 201 when there is a neural pose
return 201
class CodaLab_ConvNetDataProvider(LabeledDataProvider):
def __init__(self, data_dir, batch_range, init_epoch=1, init_batchnum=None, dp_params={}, test=False):
LabeledDataProvider.__init__(self, data_dir, batch_range, init_epoch, init_batchnum, dp_params, test)
self.data_mean = self.batch_meta['data_mean']
self.num_colors = 4
self.img_size = 90
self.data_dic = []
self.data_mean = self.data_mean.reshape((4*90*90,1))
def get_next_batch(self, training = False):
epoch, batchnum = self.curr_epoch, self.curr_batchnum
self.advance_batch()
bidx = batchnum - self.batch_range[0]
self.data_dic = unpickle(self.get_data_file_name(bidx+1))
self.data_dic['data'] = n.require((self.data_dic['data'] - self.data_mean), dtype=n.single, requirements='C')
#a=self.data_dic['data'][0:90*90,0]
#im = a.reshape((90,90))
#from matplotlib import pylab
#pylab.imshow(im)
#pylab.show()
mask = (self.data_dic['data_id'] ==201)
self.data_dic['data_id'][mask] = 200 #stupid mistakes made by Di Wu
self.data_dic["labels"] = n.c_[n.require(self.data_dic['data_id'].T, dtype=n.single)]
return epoch, batchnum, [self.data_dic['data'],self.data_dic['labels']]
def get_data_dims(self, idx=0):
return self.batch_meta['data_dim'] if idx == 0 else 1
def get_plottable_data(self, data):
return n.require((data + self.data_mean).T.reshape(data.shape[1], 3, self.img_size, self.img_size).swapaxes(1,3).swapaxes(1,2) / 255.0, dtype=n.single)
def get_num_classes(self):
# we need to change to 201 when there is a neural pose
return 201
class CroppedCodaLab_ConvNetDataProvider(LabeledDataProvider):
def __init__(self, data_dir, batch_range=None, init_epoch=1, init_batchnum=None, dp_params=None, test=False):
LabeledDataProvider.__init__(self, data_dir, batch_range, init_epoch, init_batchnum, dp_params, test)
self.border_size = dp_params['crop_border']
self.img_size = 90
self.inner_size = self.img_size - self.border_size*2
self.multiview = dp_params['multiview_test'] and test
self.num_views = 5
self.data_mult = self.num_views if self.multiview else 1
self.num_colors = 4
self.data_mean = self.batch_meta['data_mean'].reshape((4,90,90))[:,self.border_size:self.border_size+self.inner_size,self.border_size:self.border_size+self.inner_size].reshape((self.get_data_dims(), 1))
def get_next_batch(self, training = False):
epoch, batchnum = self.curr_epoch, self.curr_batchnum
self.advance_batch()
bidx = batchnum - self.batch_range[0]
self.data_dic = unpickle(self.get_data_file_name(bidx+1))
mask = (self.data_dic['data_id'] ==201)
self.data_dic['data_id'][mask] = 200 #stupid mistakes made by Di Wu
self.data_dic["labels"] = n.c_[n.require(self.data_dic['data_id'].T, dtype=n.single)]
self.data_dic['labels'] = n.require(n.tile(self.data_dic['labels'].reshape((1, self.data_dic['data'].shape[1])), (1, self.data_mult)), requirements='C')
self.data_dic['data'] = n.require(self.data_dic['data'], dtype=n.single, requirements='C')
self.cropped_data = n.zeros((self.get_data_dims(), self.data_dic['data'].shape[1]*self.data_mult), dtype=n.single)
cropped = self.cropped_data
self.__trim_borders(self.data_dic['data'], cropped)
cropped -= self.data_mean
return epoch, batchnum, [cropped, self.data_dic['labels']]
def get_data_dims(self, idx=0):
return self.inner_size**2 * 4 if idx == 0 else 1
def get_plottable_data(self, data):
return n.require((data + self.data_mean).T.reshape(data.shape[1], 3, self.img_size, self.img_size).swapaxes(1,3).swapaxes(1,2) / 255.0, dtype=n.single)
def __trim_borders(self, x, target):
y = x.reshape(self.num_colors, self.img_size, self.img_size, x.shape[1])
if self.test: # don't need to loop over cases
if self.multiview:
start_positions = [(0,0), (0, self.border_size*2),
(self.border_size, self.border_size),
(self.border_size*2, 0), (self.border_size*2, self.border_size*2)]
end_positions = [(sy+self.inner_size, sx+self.inner_size) for (sy,sx) in start_positions]
for i in xrange(self.num_views):
pic = y[:,start_positions[i][0]:end_positions[i][0],start_positions[i][1]:end_positions[i][1],:]
target[:,i * x.shape[1]:(i+1)* x.shape[1]] = pic.reshape((self.get_data_dims(),x.shape[1]))
else:
pic = y[:,self.border_size:self.border_size+self.inner_size,self.border_size:self.border_size+self.inner_size, :] # just take the center for now
target[:,:] = pic.reshape((self.get_data_dims(), x.shape[1]))
else:
for c in xrange(x.shape[1]): # loop over cases
startY, startX = nr.randint(0,self.border_size*2 + 1), nr.randint(0,self.border_size*2 + 1)
endY, endX = startY + self.inner_size, startX + self.inner_size
pic = y[:,startY:endY,startX:endX, c]
#if nr.randint(2) == 0: # also flip the image with 50% probability
# pic = pic[:,:,::-1]
target[:,c] = pic.reshape((self.get_data_dims(),))
def get_num_classes(self):
# we need to change to 201 when there is a neural pose
return 201