forked from stevenwudi/3DCNN_HMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStep1_3DCNN_template.py
95 lines (83 loc) · 3.55 KB
/
Step1_3DCNN_template.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#-------------------------------------------------------------------------------
# Name: Starting Kit for ChaLearn LAP 2014 Track3
# Purpose: Show basic functionality of provided code
#
# Author: Xavier Baro
# Author: Di Wu: stevenwudi@gmail.com
# Created: 24/03/2014
# Copyright: (c) Chalearn LAP 2014
# Licence: GPL3
#-------------------------------------------------------------------------------
import sys, os,random,numpy,zipfile
from shutil import copyfile
import matplotlib.pyplot as plt
import cv2
from ChalearnLAPEvaluation import evalGesture,exportGT_Gesture
from ChalearnLAPSample import GestureSample
from utils import IsLeftDominant
from utils import Extract_feature_normalized
from utils import Extract_feature
import time
import cPickle
"""
We choose the Sample3 as the template...
A bit random
"""
# Data folder (Training data)
print("Extracting the training files")
data=os.path.join("I:\Kaggle_multimodal\Training\\")
# Get the list of training samples
samples=os.listdir(data)
STATE_NO = 10
for file_count, file in enumerate(samples):
time_tic = time.time()
if (file_count>2):
print("\t Processing file " + file)
# Create the object to access the sample
smp=GestureSample(os.path.join(data,file))
# ###############################################
# USE Ground Truth information to learn the model
# ###############################################
# Get the list of actions for this frame
gesturesList=smp.getGestures()
for gesture in gesturesList:
gestureID,startFrame,endFrame=gesture
cuboid = numpy.zeros(( 90, 90, endFrame-startFrame+1), numpy.uint8)
frame_count_temp = 0
for x in range(startFrame, endFrame):
img = smp.getDepth3DCNN(x, ratio=0.25)
cuboid[:, :, frame_count_temp] = img
frame_count_temp +=1
fr_no = endFrame-startFrame+1
for frame in range(fr_no-3):
Feature_all[:,:,:,cuboid_count] = cuboid[:,:, frame:frame+4]
state_no = numpy.floor(frame*(STATE_NO*1.0/(fr_no-3)))
Targets[cuboid_count] = state_no+STATE_NO*(gestureID-1)
cuboid_count += 1
# ###############################################
## delete the sample
del smp
print "Elapsed time %d sec" % int(time.time() - time_tic)
if(not file_count%50 and file_count>0):
random_idx = numpy.random.permutation(range(cuboid_count))
save_dir = '.\storage\\'
print "batch: %d" % batch_num
data_temp = Feature_all[:,:,:,random_idx[:]]
data_id = Targets[random_idx[:]]
save_path= os.path.join(save_dir,'data_batch_'+str(batch_num))
out_file = open(save_path, 'wb')
dic = {'batch_label':['batch 1 of'+ str(batch_num)], 'data':data_temp,
'data_id':data_id}
cPickle.dump(dic, out_file)
out_file.close()
# pre-allocating the memory
batch_num += 1
Feature_all = numpy.zeros(shape=(90, 90, 4, 100000), dtype=numpy.uint8 )
Targets = numpy.zeros(shape=(100000, 1), dtype=numpy.uint8)
cuboid_count = 0
#data_mean = data_temp.mean(axis=3)
#dic = {'data_dim': 90*90*4,'data_in_rows':True, 'data_mean': data_mean}
#file_name ='.\storage\\batches.meta'
#out_file = open(file_name, 'wb')
#cPickle.dump(dic, out_file)
#out_file.close()