forked from kriswiner/MPU9250
-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathMPU9250.cpp
1052 lines (912 loc) · 36.3 KB
/
MPU9250.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "MPU9250.h"
//==============================================================================
//====== Set of useful function to access acceleration. gyroscope, magnetometer,
//====== and temperature data
//==============================================================================
MPU9250::MPU9250( int8_t csPin, SPIClass &spiInterface, uint32_t spi_freq )
{
// Use hardware SPI communication
// If used with sparkfun breakout board
// https://www.sparkfun.com/products/13762 , change the pre-soldered JP2 to
// enable SPI (solder middle and left instead of middle and right) pads are
// very small and re-soldering can be very tricky. I2C highly recommended.
_csPin = csPin;
_spi = &spiInterface;
_wire = NULL;
_interfaceSpeed = spi_freq;
_spi->begin();
pinMode(_csPin, OUTPUT);
deselect();
}
MPU9250::MPU9250( uint8_t address, TwoWire &wirePort, uint32_t clock_frequency )
{
_I2Caddr = address;
_wire = &wirePort;
_spi = NULL;
_interfaceSpeed = clock_frequency;
_csPin = NOT_SPI; // Used to tell the library that the sensor is using I2C
_wire->begin();
_wire->setClock(_interfaceSpeed);
}
void MPU9250::setupMagForSPI()
{
// Use slave 4 for talking to the magnetometer
writeByteSPI(49, ((1 << 7) | AK8963_ADDRESS)); // Set the SLV_4_ADDR register to the magnetometer's address
writeByteSPI(52, 0b00000000); // Setup SLV_4 control as needed (but not set to do an operation yet)
writeByteSPI(36, 0b10000000); // Enable the multi-master mode
}
void MPU9250::getMres()
{
switch (Mscale)
{
// Possible magnetometer scales (and their register bit settings) are:
// 14 bit resolution (0) and 16 bit resolution (1)
case MFS_14BITS:
mRes = 10.0f * 4912.0f / 8190.0f; // Proper scale to return milliGauss
break;
case MFS_16BITS:
mRes = 10.0f * 4912.0f / 32760.0f; // Proper scale to return milliGauss
break;
}
}
void MPU9250::getGres()
{
switch (Gscale)
{
// Possible gyro scales (and their register bit settings) are:
// 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
// Here's a bit of an algorith to calculate DPS/(ADC tick) based on that
// 2-bit value:
case GFS_250DPS:
gRes = 250.0f / 32768.0f;
break;
case GFS_500DPS:
gRes = 500.0f / 32768.0f;
break;
case GFS_1000DPS:
gRes = 1000.0f / 32768.0f;
break;
case GFS_2000DPS:
gRes = 2000.0f / 32768.0f;
break;
}
}
void MPU9250::getAres()
{
switch (Ascale)
{
// Possible accelerometer scales (and their register bit settings) are:
// 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
// Here's a bit of an algorith to calculate DPS/(ADC tick) based on that
// 2-bit value:
case AFS_2G:
aRes = 2.0f / 32768.0f;
break;
case AFS_4G:
aRes = 4.0f / 32768.0f;
break;
case AFS_8G:
aRes = 8.0f / 32768.0f;
break;
case AFS_16G:
aRes = 16.0f / 32768.0f;
break;
}
}
void MPU9250::readAccelData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z accel register data stored here
// Read the six raw data registers into data array
readBytes(_I2Caddr, ACCEL_XOUT_H, 6, &rawData[0]);
// Turn the MSB and LSB into a signed 16-bit value
destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ;
destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ;
destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ;
}
void MPU9250::readGyroData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z gyro register data stored here
// Read the six raw data registers sequentially into data array
readBytes(_I2Caddr, GYRO_XOUT_H, 6, &rawData[0]);
// Turn the MSB and LSB into a signed 16-bit value
destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ;
destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ;
destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ;
}
void MPU9250::readMagData(int16_t * destination)
{
// x/y/z gyro register data, ST2 register stored here, must read ST2 at end
// of data acquisition
uint8_t rawData[7];
// Wait for magnetometer data ready bit to be set
if (readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01)
{
// Read the six raw data and ST2 registers sequentially into data array
readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]);
uint8_t c = rawData[6]; // End data read by reading ST2 register
// Check if magnetic sensor overflow set, if not then report data
if (!(c & 0x08))
{
// Turn the MSB and LSB into a signed 16-bit value
destination[0] = ((int16_t)rawData[1] << 8) | rawData[0];
// Data stored as little Endian
destination[1] = ((int16_t)rawData[3] << 8) | rawData[2];
destination[2] = ((int16_t)rawData[5] << 8) | rawData[4];
}
}
}
int16_t MPU9250::readTempData()
{
uint8_t rawData[2]; // x/y/z gyro register data stored here
// Read the two raw data registers sequentially into data array
readBytes(_I2Caddr, TEMP_OUT_H, 2, &rawData[0]);
// Turn the MSB and LSB into a 16-bit value
return ((int16_t)rawData[0] << 8) | rawData[1];
}
// Calculate the time the last update took for use in the quaternion filters
// TODO: This doesn't really belong in this class.
void MPU9250::updateTime()
{
Now = micros();
// Set integration time by time elapsed since last filter update
deltat = ((Now - lastUpdate) / 1000000.0f);
lastUpdate = Now;
sum += deltat; // sum for averaging filter update rate
sumCount++;
}
void MPU9250::initAK8963(float * destination)
{
// First extract the factory calibration for each magnetometer axis
uint8_t rawData[3]; // x/y/z gyro calibration data stored here
// TODO: Test this!! Likely doesn't work
writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
delay(10);
writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
delay(10);
// Read the x-, y-, and z-axis calibration values
readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]);
// Return x-axis sensitivity adjustment values, etc.
destination[0] = (float)(rawData[0] - 128)/256. + 1.;
destination[1] = (float)(rawData[1] - 128)/256. + 1.;
destination[2] = (float)(rawData[2] - 128)/256. + 1.;
writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
delay(10);
// Configure the magnetometer for continuous read and highest resolution.
// Set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL
// register, and enable continuous mode data acquisition Mmode (bits [3:0]),
// 0010 for 8 Hz and 0110 for 100 Hz sample rates.
// Set magnetometer data resolution and sample ODR
writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode);
delay(10);
if(_csPin != NOT_SPI)
{
setupMagForSPI();
}
}
void MPU9250::initMPU9250()
{
// wake up device
// Clear sleep mode bit (6), enable all sensors
writeByte(_I2Caddr, PWR_MGMT_1, 0x00);
delay(100); // Wait for all registers to reset
// Get stable time source
// Auto select clock source to be PLL gyroscope reference if ready else
writeByte(_I2Caddr, PWR_MGMT_1, 0x01);
delay(200);
// Configure Gyro and Thermometer
// Disable FSYNC and set thermometer and gyro bandwidth to 41 and 42 Hz,
// respectively;
// minimum delay time for this setting is 5.9 ms, which means sensor fusion
// update rates cannot be higher than 1 / 0.0059 = 170 Hz
// DLPF_CFG = bits 2:0 = 011; this limits the sample rate to 1000 Hz for both
// With the MPU9250, it is possible to get gyro sample rates of 32 kHz (!),
// 8 kHz, or 1 kHz
writeByte(_I2Caddr, CONFIG, 0x03);
// Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
// Use a 200 Hz rate; a rate consistent with the filter update rate
// determined inset in CONFIG above.
writeByte(_I2Caddr, SMPLRT_DIV, 0x04);
// Set gyroscope full scale range
// Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are
// left-shifted into positions 4:3
// get current GYRO_CONFIG register value
uint8_t c = readByte(_I2Caddr, GYRO_CONFIG);
// c = c & ~0xE0; // Clear self-test bits [7:5]
c = c & ~0x02; // Clear Fchoice bits [1:0]
c = c & ~0x18; // Clear AFS bits [4:3]
c = c | Gscale << 3; // Set full scale range for the gyro
// Set Fchoice for the gyro to 11 by writing its inverse to bits 1:0 of
// GYRO_CONFIG
// c =| 0x00;
// Write new GYRO_CONFIG value to register
writeByte(_I2Caddr, GYRO_CONFIG, c );
// Set accelerometer full-scale range configuration
// Get current ACCEL_CONFIG register value
c = readByte(_I2Caddr, ACCEL_CONFIG);
// c = c & ~0xE0; // Clear self-test bits [7:5]
c = c & ~0x18; // Clear AFS bits [4:3]
c = c | Ascale << 3; // Set full scale range for the accelerometer
// Write new ACCEL_CONFIG register value
writeByte(_I2Caddr, ACCEL_CONFIG, c);
// Set accelerometer sample rate configuration
// It is possible to get a 4 kHz sample rate from the accelerometer by
// choosing 1 for accel_fchoice_b bit [3]; in this case the bandwidth is
// 1.13 kHz
// Get current ACCEL_CONFIG2 register value
c = readByte(_I2Caddr, ACCEL_CONFIG2);
c = c & ~0x0F; // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])
c = c | 0x03; // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
// Write new ACCEL_CONFIG2 register value
writeByte(_I2Caddr, ACCEL_CONFIG2, c);
// The accelerometer, gyro, and thermometer are set to 1 kHz sample rates,
// but all these rates are further reduced by a factor of 5 to 200 Hz because
// of the SMPLRT_DIV setting
// Configure Interrupts and Bypass Enable
// Set interrupt pin active high, push-pull, hold interrupt pin level HIGH
// until interrupt cleared, clear on read of INT_STATUS, and enable
// I2C_BYPASS_EN so additional chips can join the I2C bus and all can be
// controlled by the Arduino as master.
writeByte(_I2Caddr, INT_PIN_CFG, 0x22);
// Enable data ready (bit 0) interrupt
writeByte(_I2Caddr, INT_ENABLE, 0x01);
delay(100);
if(_csPin != NOT_SPI)
{
setupMagForSPI();
}
}
// Function which accumulates gyro and accelerometer data after device
// initialization. It calculates the average of the at-rest readings and then
// loads the resulting offsets into accelerometer and gyro bias registers.
void MPU9250::calibrateMPU9250(float * gyroBias, float * accelBias)
{
uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
uint16_t ii, packet_count, fifo_count;
int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
// reset device
// Write a one to bit 7 reset bit; toggle reset device
writeByte(_I2Caddr, PWR_MGMT_1, READ_FLAG);
delay(100);
// get stable time source; Auto select clock source to be PLL gyroscope
// reference if ready else use the internal oscillator, bits 2:0 = 001
writeByte(_I2Caddr, PWR_MGMT_1, 0x01);
writeByte(_I2Caddr, PWR_MGMT_2, 0x00);
delay(200);
// Configure device for bias calculation
// Disable all interrupts
writeByte(_I2Caddr, INT_ENABLE, 0x00);
// Disable FIFO
writeByte(_I2Caddr, FIFO_EN, 0x00);
// Turn on internal clock source
writeByte(_I2Caddr, PWR_MGMT_1, 0x00);
// Disable I2C master
writeByte(_I2Caddr, I2C_MST_CTRL, 0x00);
// Disable FIFO and I2C master modes
writeByte(_I2Caddr, USER_CTRL, 0x00);
// Reset FIFO and DMP
writeByte(_I2Caddr, USER_CTRL, 0x0C);
delay(15);
// Configure MPU6050 gyro and accelerometer for bias calculation
// Set low-pass filter to 188 Hz
writeByte(_I2Caddr, CONFIG, 0x01);
// Set sample rate to 1 kHz
writeByte(_I2Caddr, SMPLRT_DIV, 0x00);
// Set gyro full-scale to 250 degrees per second, maximum sensitivity
writeByte(_I2Caddr, GYRO_CONFIG, 0x00);
// Set accelerometer full-scale to 2 g, maximum sensitivity
writeByte(_I2Caddr, ACCEL_CONFIG, 0x00);
uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
uint16_t accelsensitivity = 16384; // = 16384 LSB/g
// Configure FIFO to capture accelerometer and gyro data for bias calculation
writeByte(_I2Caddr, USER_CTRL, 0x40); // Enable FIFO
// Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in
// MPU-9150)
writeByte(_I2Caddr, FIFO_EN, 0x78);
delay(40); // accumulate 40 samples in 40 milliseconds = 480 bytes
// At end of sample accumulation, turn off FIFO sensor read
// Disable gyro and accelerometer sensors for FIFO
writeByte(_I2Caddr, FIFO_EN, 0x00);
// Read FIFO sample count
readBytes(_I2Caddr, FIFO_COUNTH, 2, &data[0]);
fifo_count = ((uint16_t)data[0] << 8) | data[1];
// How many sets of full gyro and accelerometer data for averaging
packet_count = fifo_count/12;
for (ii = 0; ii < packet_count; ii++)
{
int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
// Read data for averaging
readBytes(_I2Caddr, FIFO_R_W, 12, &data[0]);
// Form signed 16-bit integer for each sample in FIFO
accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] );
accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] );
accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] );
gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] );
gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] );
gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]);
// Sum individual signed 16-bit biases to get accumulated signed 32-bit
// biases.
accel_bias[0] += (int32_t) accel_temp[0];
accel_bias[1] += (int32_t) accel_temp[1];
accel_bias[2] += (int32_t) accel_temp[2];
gyro_bias[0] += (int32_t) gyro_temp[0];
gyro_bias[1] += (int32_t) gyro_temp[1];
gyro_bias[2] += (int32_t) gyro_temp[2];
}
// Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
accel_bias[0] /= (int32_t) packet_count;
accel_bias[1] /= (int32_t) packet_count;
accel_bias[2] /= (int32_t) packet_count;
gyro_bias[0] /= (int32_t) packet_count;
gyro_bias[1] /= (int32_t) packet_count;
gyro_bias[2] /= (int32_t) packet_count;
// Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
if (accel_bias[2] > 0L)
{
accel_bias[2] -= (int32_t) accelsensitivity;
}
else
{
accel_bias[2] += (int32_t) accelsensitivity;
}
// Construct the gyro biases for push to the hardware gyro bias registers,
// which are reset to zero upon device startup.
// Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input
// format.
data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF;
// Biases are additive, so change sign on calculated average gyro biases
data[1] = (-gyro_bias[0]/4) & 0xFF;
data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
data[3] = (-gyro_bias[1]/4) & 0xFF;
data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
data[5] = (-gyro_bias[2]/4) & 0xFF;
// Push gyro biases to hardware registers
writeByte(_I2Caddr, XG_OFFSET_H, data[0]);
writeByte(_I2Caddr, XG_OFFSET_L, data[1]);
writeByte(_I2Caddr, YG_OFFSET_H, data[2]);
writeByte(_I2Caddr, YG_OFFSET_L, data[3]);
writeByte(_I2Caddr, ZG_OFFSET_H, data[4]);
writeByte(_I2Caddr, ZG_OFFSET_L, data[5]);
// Output scaled gyro biases for display in the main program
gyroBias[0] = (float) gyro_bias[0]/(float) gyrosensitivity;
gyroBias[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
gyroBias[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
// Construct the accelerometer biases for push to the hardware accelerometer
// bias registers. These registers contain factory trim values which must be
// added to the calculated accelerometer biases; on boot up these registers
// will hold non-zero values. In addition, bit 0 of the lower byte must be
// preserved since it is used for temperature compensation calculations.
// Accelerometer bias registers expect bias input as 2048 LSB per g, so that
// the accelerometer biases calculated above must be divided by 8.
// A place to hold the factory accelerometer trim biases
int32_t accel_bias_reg[3] = {0, 0, 0};
// Read factory accelerometer trim values
readBytes(_I2Caddr, XA_OFFSET_H, 2, &data[0]);
accel_bias_reg[0] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
readBytes(_I2Caddr, YA_OFFSET_H, 2, &data[0]);
accel_bias_reg[1] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
readBytes(_I2Caddr, ZA_OFFSET_H, 2, &data[0]);
accel_bias_reg[2] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
// Define mask for temperature compensation bit 0 of lower byte of
// accelerometer bias registers
uint32_t mask = 1uL;
// Define array to hold mask bit for each accelerometer bias axis
uint8_t mask_bit[3] = {0, 0, 0};
for (ii = 0; ii < 3; ii++)
{
// If temperature compensation bit is set, record that fact in mask_bit
if ((accel_bias_reg[ii] & mask))
{
mask_bit[ii] = 0x01;
}
}
// Construct total accelerometer bias, including calculated average
// accelerometer bias from above
// Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g
// (16 g full scale)
accel_bias_reg[0] -= (accel_bias[0]/8);
accel_bias_reg[1] -= (accel_bias[1]/8);
accel_bias_reg[2] -= (accel_bias[2]/8);
data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
data[1] = (accel_bias_reg[0]) & 0xFF;
// preserve temperature compensation bit when writing back to accelerometer
// bias registers
data[1] = data[1] | mask_bit[0];
data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
data[3] = (accel_bias_reg[1]) & 0xFF;
// Preserve temperature compensation bit when writing back to accelerometer
// bias registers
data[3] = data[3] | mask_bit[1];
data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
data[5] = (accel_bias_reg[2]) & 0xFF;
// Preserve temperature compensation bit when writing back to accelerometer
// bias registers
data[5] = data[5] | mask_bit[2];
// Apparently this is not working for the acceleration biases in the MPU-9250
// Are we handling the temperature correction bit properly?
// Push accelerometer biases to hardware registers
writeByte(_I2Caddr, XA_OFFSET_H, data[0]);
writeByte(_I2Caddr, XA_OFFSET_L, data[1]);
writeByte(_I2Caddr, YA_OFFSET_H, data[2]);
writeByte(_I2Caddr, YA_OFFSET_L, data[3]);
writeByte(_I2Caddr, ZA_OFFSET_H, data[4]);
writeByte(_I2Caddr, ZA_OFFSET_L, data[5]);
// Output scaled accelerometer biases for display in the main program
accelBias[0] = (float)accel_bias[0]/(float)accelsensitivity;
accelBias[1] = (float)accel_bias[1]/(float)accelsensitivity;
accelBias[2] = (float)accel_bias[2]/(float)accelsensitivity;
}
// Accelerometer and gyroscope self test; check calibration wrt factory settings
// Should return percent deviation from factory trim values, +/- 14 or less
// deviation is a pass.
void MPU9250::MPU9250SelfTest(float * destination)
{
uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
uint8_t selfTest[6];
int32_t gAvg[3] = {0}, aAvg[3] = {0}, aSTAvg[3] = {0}, gSTAvg[3] = {0};
float factoryTrim[6];
uint8_t FS = GFS_250DPS;
writeByte(_I2Caddr, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz
writeByte(_I2Caddr, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
writeByte(_I2Caddr, GYRO_CONFIG, FS<<3); // Set full scale range for the gyro to 250 dps
writeByte(_I2Caddr, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
writeByte(_I2Caddr, ACCEL_CONFIG, FS<<3); // Set full scale range for the accelerometer to 2 g
for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer
readBytes(_I2Caddr, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
readBytes(_I2Caddr, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
}
// Get average of 200 values and store as average current readings
for (int ii =0; ii < 3; ii++)
{
aAvg[ii] /= 200;
gAvg[ii] /= 200;
}
// Configure the accelerometer for self-test
// Enable self test on all three axes and set accelerometer range to +/- 2 g
writeByte(_I2Caddr, ACCEL_CONFIG, 0xE0);
// Enable self test on all three axes and set gyro range to +/- 250 degrees/s
writeByte(_I2Caddr, GYRO_CONFIG, 0xE0);
delay(25); // Delay a while to let the device stabilize
// Get average self-test values of gyro and acclerometer
for (int ii = 0; ii < 200; ii++)
{
// Read the six raw data registers into data array
readBytes(_I2Caddr, ACCEL_XOUT_H, 6, &rawData[0]);
// Turn the MSB and LSB into a signed 16-bit value
aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;
aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
// Read the six raw data registers sequentially into data array
readBytes(_I2Caddr, GYRO_XOUT_H, 6, &rawData[0]);
// Turn the MSB and LSB into a signed 16-bit value
gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;
gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
}
// Get average of 200 values and store as average self-test readings
for (int ii =0; ii < 3; ii++)
{
aSTAvg[ii] /= 200;
gSTAvg[ii] /= 200;
}
// Configure the gyro and accelerometer for normal operation
writeByte(_I2Caddr, ACCEL_CONFIG, 0x00);
writeByte(_I2Caddr, GYRO_CONFIG, 0x00);
delay(25); // Delay a while to let the device stabilize
// Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
// X-axis accel self-test results
selfTest[0] = readByte(_I2Caddr, SELF_TEST_X_ACCEL);
// Y-axis accel self-test results
selfTest[1] = readByte(_I2Caddr, SELF_TEST_Y_ACCEL);
// Z-axis accel self-test results
selfTest[2] = readByte(_I2Caddr, SELF_TEST_Z_ACCEL);
// X-axis gyro self-test results
selfTest[3] = readByte(_I2Caddr, SELF_TEST_X_GYRO);
// Y-axis gyro self-test results
selfTest[4] = readByte(_I2Caddr, SELF_TEST_Y_GYRO);
// Z-axis gyro self-test results
selfTest[5] = readByte(_I2Caddr, SELF_TEST_Z_GYRO);
// Retrieve factory self-test value from self-test code reads
// FT[Xa] factory trim calculation
factoryTrim[0] = (float)(2620/1<<FS)*(pow(1.01 ,((float)selfTest[0] - 1.0) ));
// FT[Ya] factory trim calculation
factoryTrim[1] = (float)(2620/1<<FS)*(pow(1.01 ,((float)selfTest[1] - 1.0) ));
// FT[Za] factory trim calculation
factoryTrim[2] = (float)(2620/1<<FS)*(pow(1.01 ,((float)selfTest[2] - 1.0) ));
// FT[Xg] factory trim calculation
factoryTrim[3] = (float)(2620/1<<FS)*(pow(1.01 ,((float)selfTest[3] - 1.0) ));
// FT[Yg] factory trim calculation
factoryTrim[4] = (float)(2620/1<<FS)*(pow(1.01 ,((float)selfTest[4] - 1.0) ));
// FT[Zg] factory trim calculation
factoryTrim[5] = (float)(2620/1<<FS)*(pow(1.01 ,((float)selfTest[5] - 1.0) ));
// Report results as a ratio of (STR - FT)/FT; the change from Factory Trim
// of the Self-Test Response
// To get percent, must multiply by 100
for (int i = 0; i < 3; i++)
{
// Report percent differences
destination[i] = 100.0 * ((float)(aSTAvg[i] - aAvg[i])) / factoryTrim[i]
- 100.;
// Report percent differences
destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]
- 100.;
}
}
// Function which accumulates magnetometer data after device initialization.
// It calculates the bias and scale in the x, y, and z axes.
void MPU9250::magCalMPU9250(float * bias_dest, float * scale_dest)
{
uint16_t ii = 0, sample_count = 0;
int32_t mag_bias[3] = {0, 0, 0},
mag_scale[3] = {0, 0, 0};
int16_t mag_max[3] = {-32768, -32768, -32768}, // Wrote out decimal (signed) values to remove a conversion warning
mag_min[3] = {32767, 32767, 32767},
mag_temp[3] = {0, 0, 0};
// Make sure resolution has been calculated
getMres();
Serial.println(F("Mag Calibration: Wave device in a figure 8 until done!"));
Serial.println(
F(" 4 seconds to get ready followed by 15 seconds of sampling)"));
delay(4000);
// shoot for ~fifteen seconds of mag data
// at 8 Hz ODR, new mag data is available every 125 ms
if (Mmode == M_8HZ)
{
sample_count = 128;
}
// at 100 Hz ODR, new mag data is available every 10 ms
if (Mmode == M_100HZ)
{
sample_count = 1500;
}
for (ii = 0; ii < sample_count; ii++)
{
readMagData(mag_temp); // Read the mag data
for (int jj = 0; jj < 3; jj++)
{
if (mag_temp[jj] > mag_max[jj])
{
mag_max[jj] = mag_temp[jj];
}
if (mag_temp[jj] < mag_min[jj])
{
mag_min[jj] = mag_temp[jj];
}
}
if (Mmode == M_8HZ)
{
delay(135); // At 8 Hz ODR, new mag data is available every 125 ms
}
if (Mmode == M_100HZ)
{
delay(12); // At 100 Hz ODR, new mag data is available every 10 ms
}
}
// Serial.println("mag x min/max:"); Serial.println(mag_max[0]); Serial.println(mag_min[0]);
// Serial.println("mag y min/max:"); Serial.println(mag_max[1]); Serial.println(mag_min[1]);
// Serial.println("mag z min/max:"); Serial.println(mag_max[2]); Serial.println(mag_min[2]);
// Get hard iron correction
// Get 'average' x mag bias in counts
mag_bias[0] = (mag_max[0] + mag_min[0]) / 2;
// Get 'average' y mag bias in counts
mag_bias[1] = (mag_max[1] + mag_min[1]) / 2;
// Get 'average' z mag bias in counts
mag_bias[2] = (mag_max[2] + mag_min[2]) / 2;
// Save mag biases in G for main program
bias_dest[0] = (float)mag_bias[0] * mRes * factoryMagCalibration[0];
bias_dest[1] = (float)mag_bias[1] * mRes * factoryMagCalibration[1];
bias_dest[2] = (float)mag_bias[2] * mRes * factoryMagCalibration[2];
// Get soft iron correction estimate
// Get average x axis max chord length in counts
mag_scale[0] = (mag_max[0] - mag_min[0]) / 2;
// Get average y axis max chord length in counts
mag_scale[1] = (mag_max[1] - mag_min[1]) / 2;
// Get average z axis max chord length in counts
mag_scale[2] = (mag_max[2] - mag_min[2]) / 2;
float avg_rad = mag_scale[0] + mag_scale[1] + mag_scale[2];
avg_rad /= 3.0;
scale_dest[0] = avg_rad / ((float)mag_scale[0]);
scale_dest[1] = avg_rad / ((float)mag_scale[1]);
scale_dest[2] = avg_rad / ((float)mag_scale[2]);
Serial.println(F("Mag Calibration done!"));
}
// Wire.h read and write protocols
uint8_t MPU9250::writeByte(uint8_t deviceAddress, uint8_t registerAddress,
uint8_t data)
{
if (_csPin != NOT_SPI)
{
return writeByteSPI(registerAddress, data);
}
else
{
return writeByteWire(deviceAddress,registerAddress, data);
}
}
uint8_t MPU9250::writeByteSPI(uint8_t registerAddress, uint8_t writeData)
{
uint8_t returnVal;
_spi->beginTransaction(SPISettings(_interfaceSpeed, MSBFIRST, SPI_MODE));
select();
_spi->transfer(registerAddress);
returnVal = _spi->transfer(writeData);
deselect();
_spi->endTransaction();
// #ifdef SERIAL_DEBUG
// Serial.print("MPU9250::writeByteSPI slave returned: 0x");
// Serial.println(returnVal, HEX);
// #endif
return returnVal;
}
uint8_t MPU9250::writeByteWire(uint8_t deviceAddress, uint8_t registerAddress,
uint8_t data)
{
_wire->setClock(_interfaceSpeed); // Reset to the desired speed, in case other devices required a slowdown
_wire->beginTransmission(deviceAddress); // Initialize the Tx buffer
_wire->write(registerAddress); // Put slave register address in Tx buffer
_wire->write(data); // Put data in Tx buffer
_wire->endTransmission(); // Send the Tx buffer
// TODO: Fix this to return something meaningful
// return NULL; // In the meantime fix it to return the right type
return 0;
}
// Read a byte from given register on device. Calls necessary SPI or I2C
// implementation. This was configured in the constructor.
uint8_t MPU9250::readByte(uint8_t deviceAddress, uint8_t registerAddress)
{
if (_csPin != NOT_SPI)
{
if(deviceAddress == AK8963_ADDRESS)
{
return readMagByteSPI(registerAddress);
}
else
{
return readByteSPI(registerAddress);
}
}
else
{
return readByteWire(deviceAddress, registerAddress);
}
}
uint8_t MPU9250::readMagByteSPI(uint8_t registerAddress)
{
setupMagForSPI();
writeByteSPI(49, ((1 << 7) | AK8963_ADDRESS));
writeByteSPI(50, registerAddress);
writeByteSPI(52, 0b11000000); // Command the read into I2C_SLV4_DI register, cause an interrupt when complete
// Wait for the data to be ready
uint8_t I2C_MASTER_STATUS = readByteSPI(54);
uint32_t count = 0;
while(((I2C_MASTER_STATUS & 0b01000000) == 0) && (count++ < 100000)) // Checks against the I2C_SLV4_DONE bit in the I2C master status register
{
I2C_MASTER_STATUS = readByteSPI(54);
}
if(count > 10000)
{
Serial.println(F("Timed out"));
}
return readByteSPI(53); // Read the data that is in the SLV4_DI register
}
uint8_t MPU9250::writeMagByteSPI(uint8_t registerAddress, uint8_t data)
{
setupMagForSPI();
writeByteSPI(49, ((1 << 7) | AK8963_ADDRESS));
writeByteSPI(50, registerAddress);
writeByteSPI(51, data);
writeByteSPI(52, 0b11000000); // Command the read into I2C_SLV4_DI register, cause an interrupt when complete
uint8_t I2C_MASTER_STATUS = readByteSPI(54);
uint32_t count = 0;
while(((I2C_MASTER_STATUS & 0b01000000) == 0) && (count++ < 10000)) // Checks against the I2C_SLV4_DONE bit in the I2C master status register
{
I2C_MASTER_STATUS = readByteSPI(54);
}
if(count > 10000)
{
Serial.println(F("Timed out"));
}
return 0x00;
}
// Read a byte from the given register address from device using I2C
uint8_t MPU9250::readByteWire(uint8_t deviceAddress, uint8_t registerAddress)
{
uint8_t data; // `data` will store the register data
// Initialize the Tx buffer
_wire->beginTransmission(deviceAddress);
// Put slave register address in Tx buffer
_wire->write(registerAddress);
// Send the Tx buffer, but send a restart to keep connection alive
_wire->endTransmission(false);
// Read one byte from slave register address
_wire->requestFrom(deviceAddress, (uint8_t) 1);
// Fill Rx buffer with result
data = _wire->read();
// Return data read from slave register
return data;
}
// Read a byte from the given register address using SPI
uint8_t MPU9250::readByteSPI(uint8_t registerAddress)
{
return writeByteSPI(registerAddress | READ_FLAG, 0xFF /*0xFF is arbitrary*/);
}
// Read 1 or more bytes from given register and device using I2C
uint8_t MPU9250::readBytesWire(uint8_t deviceAddress, uint8_t registerAddress,
uint8_t count, uint8_t * dest)
{
// Initialize the Tx buffer
_wire->beginTransmission(deviceAddress);
// Put slave register address in Tx buffer
_wire->write(registerAddress);
// Send the Tx buffer, but send a restart to keep connection alive
_wire->endTransmission(false);
uint8_t i = 0;
// Read bytes from slave register address
_wire->requestFrom(deviceAddress, count);
while (_wire->available())
{
// Put read results in the Rx buffer
dest[i++] = _wire->read();
}
return i; // Return number of bytes written
}
// Select slave IC by asserting CS pin
void MPU9250::select()
{
digitalWrite(_csPin, LOW);
}
// Select slave IC by deasserting CS pin
void MPU9250::deselect()
{
digitalWrite(_csPin, HIGH);
}
uint8_t MPU9250::readBytesSPI(uint8_t registerAddress, uint8_t count,
uint8_t * dest)
{
_spi->beginTransaction(SPISettings(SPI_DATA_RATE, MSBFIRST, SPI_MODE));
select();
_spi->transfer(registerAddress | READ_FLAG);
uint8_t i;
for (i = 0; i < count; i++)
{
dest[i] = _spi->transfer(0x00);
// #ifdef SERIAL_DEBUG
// Serial.print("readBytesSPI::Read byte: 0x");
// Serial.println(dest[i], HEX);
// #endif
}
_spi->endTransaction();
deselect();
delayMicroseconds(50);
return i; // Return number of bytes written
/*
#ifdef SERIAL_DEBUG
Serial.print("MPU9250::writeByteSPI slave returned: 0x");
Serial.println(returnVal, HEX);
#endif
return returnVal;
*/
/*
// Set slave address of AK8963 and set AK8963 for read
writeByteSPI(I2C_SLV0_ADDR, AK8963_ADDRESS | READ_FLAG);
Serial.print("\nBHW::I2C_SLV0_ADDR set to: 0x");
Serial.println(readByte(_I2Caddr, I2C_SLV0_ADDR), HEX);
// Set address to start read from
writeByteSPI(I2C_SLV0_REG, registerAddress);
// Read bytes from magnetometer
//
Serial.print("\nBHW::I2C_SLV0_CTRL gets 0x");
Serial.println(READ_FLAG | count, HEX);
// Read count bytes from registerAddress via I2C_SLV0
Serial.print("BHW::readBytesSPI: return value test: ");
Serial.println(writeByteSPI(I2C_SLV0_CTRL, READ_FLAG | count));
*/
}
uint8_t MPU9250::readBytes(uint8_t deviceAddress, uint8_t registerAddress,
uint8_t count, uint8_t * dest)
{
if (_csPin == NOT_SPI) // Read via I2C
{
return readBytesWire(deviceAddress, registerAddress, count, dest);
}
else // Read using SPI
{
return readBytesSPI(registerAddress, count, dest);
}
}
bool MPU9250::magInit()
{
// Reset registers to defaults, bit auto clears
writeByteSPI(0x6B, 0x80);
// Auto select the best available clock source
writeByteSPI(0x6B, 0x01);
// Enable X,Y, & Z axes of accel and gyro
writeByteSPI(0x6C, 0x00);
// Config disable FSYNC pin, set gyro/temp bandwidth to 184/188 Hz
writeByteSPI(0x1A, 0x01);
// Self tests off, gyro set to +/-2000 dps FS
writeByteSPI(0x1B, 0x18);
// Self test off, accel set to +/- 8g FS
writeByteSPI(0x1C, 0x08);
// Bypass DLPF and set accel bandwidth to 184 Hz
writeByteSPI(0x1D, 0x09);
// Configure INT pin (active high / push-pull / latch until read)
writeByteSPI(0x37, 0x30);
// Enable I2C master mode
// TODO Why not do this 11-100 ms after power up?
writeByteSPI(0x6A, 0x20);
// Disable multi-master and set I2C master clock to 400 kHz
//https://developer.mbed.org/users/kylongmu/code/MPU9250_SPI/ calls says
// enabled multi-master... TODO Find out why
writeByteSPI(0x24, 0x0D);
// Set to write to slave address 0x0C
writeByteSPI(0x25, 0x0C);
// Point save 0 register at AK8963's control 2 (soft reset) register
writeByteSPI(0x26, 0x0B);
// Send 0x01 to AK8963 via slave 0 to trigger a soft restart
writeByteSPI(0x63, 0x01);
// Enable simple 1-byte I2C reads from slave 0
writeByteSPI(0x27, 0x81);
// Point save 0 register at AK8963's control 1 (mode) register
writeByteSPI(0x26, 0x0A);
// 16-bit continuous measurement mode 1
writeByteSPI(0x63, 0x12);
// Enable simple 1-byte I2C reads from slave 0
writeByteSPI(0x27, 0x81);
// TODO: Remove this code
uint8_t ret = ak8963WhoAmI_SPI();
#ifdef SERIAL_DEBUG
Serial.print("MPU9250::magInit to return ");
Serial.println((ret == 0x48) ? "true" : "false");
#endif