-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNotes&Solutions.txt
4852 lines (4839 loc) · 204 KB
/
Notes&Solutions.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Equality Laws
Substitution
E
=====
E[v:=F]
Reflexivity
x=x
Symmetry
(x=y)=(y=x)
Transitivity
X=Y,Y=Z
======
X=Z
Leibniz
X=Y
============
E[z:=X]=E[z:=Y]
Propositional Calculus Inference Rules
Substitution
P
=====
P[r:=Q]
Transitivity
P=Q,Q=R
=======
P=R
Leibniz
P=Q
============
E[r:=P]=E[r:=Q]
ARSENAL:
1.1 Substitution: LOOKUP
1.2 Reflexivity: LOOKUP
1.3 Symmetry: LOOKUP
1.4 Transitivity: LOOKUP
1.5 Leibniz: LOOKUP
1.6 g(z) = 3•z+6
1.7 g.z: E
1.8 Leibniz: \frac{X=Y}{g.X=g.Y}
1.9 2•x/2=x
1.10 x:=E
1.11 {P}S{Q}
1.12 Definition of assignment: {R[x:=E]}x:=E{R}
2.1 Satisfiability,Validity Definition. A boolean expression P is satisfied in
a state
if its value is true in that state; P is satisfiable if there is a state
in which it is satisfied;
and P is valid if it is satisfied in every state. A valid boolean
expression is called a tautology.
2.2 Duality Definition. The dual PD of a boolean expression P is constructed
from P by interchanging
occurrences of
1. true and false,
2. ∧ and ∨,
3. ≡ and ≢,
4. → and ⇍, and
5. ⇐ and ⇏
2.3 Metatheorem Duality
1. P is valid iff ¬PD is valid.
2. P ≡ Q is valid iff PD ≡ QD is valid.
2.4 Henry VIII had one son and Cleopatra had two.
p: Henry VIII had one son and Cleopatra had two
A boolean variable that can denote a proposition is sometimes called
a propositional variable,
but we will stick to the term boolean variable.
x: Henry VIII had one son,
y: Cleopatra had two (sons),
English statement: x and y
Boolean expression: x ∧ y
2.5 Translation into a boolean expression.
To translate proposition p into a boolean expression:
1. Introduce boolean variable to denote subpropositions.
2. Replace these subpropositions by their corresponding boolean
variables.
3. Translate the result of step 2 into a boolean expression, using
“obvious” translation
of the English wordsinto oeprators.
| it is not the case that | ¬ |
| if p then q | p→q |
| and, but | ∧ |
| or | ∨ |
| not | ¬ |
2.4 Follow up
x: Henry VIII had one son,
y: Cleopatra had two (sons),
z: I’ll eat my hat,
w: 1 is prime.
| proposition | translation |
| Henry VIII had one son or I’ll eat my hat. | x∨z |
| Henry VIII had one son and 1 is not prime. | x∧¬w |
| If 1 is prime and Cleopatra had two sons, I’ll eat my hat. | w∧y→z |
3.1 Axiom, Associativity of ≡: ((p ≡ q) ≡ r) ≡ ( p ≡ (q ≡ r))
3.2 Axiom, Symmetry of ≡: p ≡ q ≡ q ≡ p
3.3 Axiom, Identity of≡: true ≡ q ≡ q
3.4 True
= <Identity of ≡(3.3), with q:=true>
true ≡ true
= <Identity of ≡(3.3) —replace the second true>
true ≡ q ≡ q
3.5 Reflexivity of ≡: p ≡ p
p ≡ p
= <Symmetry of ≡(3.2), with q:=p —replace p≡p by p≡q≡q≡p>
p ≡ q ≡ q ≡ p —Symmetry of ≡(3.2)
3.6 Proof method. To prove that P ≡ Q is a theorem, transform P to Q or Q to P
using Leibniz.
3.7 Metatheorem. Any two theorems are equivalent.
3.8 Axiom, Definition of false: false ≡ ¬true
3.9 Axiom, Distributivity of ¬ over ≡ : ¬(p ≡ q) ≡ ¬p ≡ q
3.10 Axiom, Definition of ≢ : (p ≢ q) ≡ ¬(p ≡ q)
3.11 ¬p ≡ q ≡ p ≡ ¬q
= <(3.9), ¬(p ≡ q) ≡ ¬p ≡ q>
¬(p ≡ q) ≡ p ≡ ¬q
= <(3.9), with p,q:=q,p —i.e. ¬(q ≡ p) ≡ ¬q ≡ p>
¬(p ≡ q) ≡ ¬(p ≡ q) —Reflexivity of ≡ (3.5)
3.12 Double negation: ¬¬p ≡ p
3.13 Negation of false: ¬false ≡ true
3.14 (p ≢ q) ≡ ¬p ≡ q
3.15 ¬p ≡ p ≡ false
3.16 Symmetry of ≢: (p ≢ q) ≡ (q ≢ p)
p ≢ q
= <Def. of ≢ (3.10)>
¬(p ≡ q)
= <Symmetry of ≡ (3.2)>
¬(q ≡ p)
= <Def. of ≢ (3.10), with p,q:=q,p>
q ≢ p
3.17 Associativity of ≢: ((p ≢ q) ≢ r) ≡ (p ≢ (q ≢ r))
3.18 Mutual associativity: ((p ≢ q) ≡ r) ≡ (p ≢ (q ≡ r))
3.19 Mutual interchangeability: p ≢ q ≡ r ≡ p ≡ q ≢ r
3.20 Heuristic. Identify applicable theorems by matching the structure of
expressions or subexpressions.
The operators that appear in a boolean expression and the shape of its
subexpressions can focus the
choice of theorems to be used in manipulating it.
3.21 P0 ≡ P1 ≡ … ≡ Pn is true exactly when an even number of the Pi are false.
3.22 Principle: Structure proofs to avoid repeating the same subexpression on
many lines.
3.23 Heuristic of Definition Elimination: To prove a theorem concerning an
operator o that is defined in
terms of another, say •, expand the definition of o to arrive at a
formula that contains •;
exploit properties of • to manipulate the formula; and then (possibly)
reintroduce o using its definition.
3.24 Axiom, Symmetry of ∨: p ∨ q ≡ q ∨ p
3.25 Axiom, Associativity of ∨: (p ∨ q) ∨ r ≡ p ∨ (q ∨ r)
3.26 Axiom, Idempotency of ∨: p ∨ p ≡ p
3.27 Axiom, Distributivity of ∨ over ≡: p ∨ (q ≡ r) ≡ p ∨ q ≡ p ∨ r
p ∨ (q ≡ r) ≡ p ∨ q ≡ p ∨ r
Replacing LHS by the RHS called “multiplying out”.
Replacing RHS by the LHS called “factoring”.
3.28 Axiom, Excluded middle: p ∨ ¬p
Axiom Excluded middle can be interpreted to mean that in any state
either p or ¬p is true;
there is no middle ground.
3.29 Zero of ∨: p ∨ true ≡ true
Z is a zero of a binary operation o if x o Z = Z o x = Z, for all x.
Z is a left zero if Z o x = Z, for all x. Z is a right zero if x o Z = Z, for all x.
The term zero comes from the fact that 0 is the zero of •.
p ∨ true
= <Identity of ≡(3.3), with q:=p —replace true by p≡p>
p ∨ (p ≡ p)
= <Distributivity of ∨ over ≡(3.27), with q,r:=p,p —replace p∨(p≡p) by p∨p≡p∨p>
p ∨ p ≡ p ∨ p
= <Identity of ≡(3.3), with q:=p∨p —replace p∨p≡p∨p by true>
true
3.30 Identity of ∨: p ∨ false ≡ p
true
= <Identity of ≡(3.3), with q:=true —replace true by true≡true>
true ≡ true
= <Identity of ≡(3.3) with q:=p —replace true by p≡p>
true ≡ p ≡ p
= <Idempotency of ∨(3.26) —replace p by p∨p>
true ≡ p ∨ p ≡ p
= <Excluded middle(3.28) —replace true by p∨¬p>
p ∨ ¬p ≡ p ∨ p ≡ p
= <Distributivity of ∨ over ≡(3.27), with q:=p
—replace p∨¬p≡p∨p≡p by p∨(¬p≡p)>
p ∨ (¬p ≡ p) ≡ p
= <Distributivity of ¬ over ≡(3.9), with q:=p —replace (¬p≡p) by ¬(p≡p)>
p ∨ ¬(p ≡ p) ≡ p
= <Reflexivity of ≡(3.5) —replace p≡p by true>
p ∨ ¬true ≡ p
= <Def. of false(3.8) —replace ¬true by false>
p ∨ false ≡ p
3.31 Distributivity of ∨ over ∨: p ∨ (q ∨ r) ≡ (p ∨ q) ∨ (p ∨ r)
3.32 p ∨ q ≡ p ∨ ¬q ≡ p
p ∨ q ≡ p ∨ ¬q
= <Distributivity of ∨ over ≡(3.27), with r:=¬q>
p ∨ (q ≡ ¬q)
= <Symmetry of ≡(3.2), with p,q:=q,¬q>
p ∨ (¬q ≡ q)
= <Distributivity of ¬ over ≡(3.9), with p:=q>
p ∨ ¬(q ≡ q)
= <Identity of ≡(3.3)>
p ∨ ¬(true)
= <Def. of false(3.8)>
p ∨ false —theorem(3.30)
3.33 Heuristic: To prove P ≡ Q, transform the expression with the most
structure (either P or Q) into the other.
3.34 Principle: Structure proofs to minimize the number of rabbits pulled out
of a hat —make each
step obvious, based on the structure of the expression and the goal of
the manipulation.
3.35 Axiom, Golden rule: p ∧ q ≡ p ≡ q ≡ p ∨ q
It can also be rewritten as (p ≡ q) ≡ (p ∧ q ≡ p ∨ q)
3.36 Symmetry of ∧: p ∧ q ≡ q ∧ p
3.37 Associativity of ∧: (p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
(p ∧ q) ∧ r
= <Golden rule(3.35), —replace p∧q with (p≡q≡p∨q)>
(p ≡ q ≡ p ∨ q) ∧ r
= <Golden rule(3.35) with p,q:=p≡q≡p∨q,r —replace (p≡q≡p∨q)∧r by
p≡q≡p∨q≡r≡(p≡q≡p∨q)∨r>
p ≡ q ≡ p ∨ q ≡ r ≡ (p ≡ q ≡ p ∨ q) ∨ r
= <Symmetry of ∨(3.24), with p,q:=(p≡q≡p∨q),r —replace (p≡q≡p∨q)∨r
by r∨(p≡q≡p∨q)>
p ≡ q ≡ p ∨ q ≡ r ≡ r ∨ (p ≡ q ≡ p ∨ q)
= <Distributivity of ∨ over ≡(3.27), with p,q,r:=r,p≡q,p∨q —replace
r∨(p≡q≡p∨q) by r∨(p≡q)≡r∨(p∨q)>
p ≡ q ≡ p ∨ q ≡ r ≡ r ∨ (p ≡ q) ≡ r ∨ (p ∨ q)
= <Distributivity of ∨ over ≡(3.27), with p,q,r:=r,p,q —replace
r∨(p≡q) by r ∨ p ≡ r ∨ q>
p ≡ q ≡ p ∨ q ≡ r ≡ r ∨ p ≡ r ∨ q ≡ r ∨ (p ∨ q)
= <Distributivity of ∨ over ∨(3.31), with p,q,r:=r,p,q —replace
r∨(p∨q) by r∨p∨r∨q)
p ≡ q ≡ p ∨ q ≡ r ≡ r ∨ p ≡ r ∨ q ≡ r ∨ p ∨ r ∨ q
= <Symmetry and associativity of ≡ and ∨>
p ≡ q ≡ r ≡ p ∨ q ≡ q ∨ r ≡ r ∨ p ≡ p ∨ q ∨ r
p ≡ q ≡ q ∨ r ≡ r ∨ p ≡ (p ∨ q) ∧ r
p ∧ (q ∧ r)
= <Symmetry of ∧ (3.36)>
(q ∧ r) ∧ p
= <(3.55), with p,q,r:=q,r,p>
q ≡ r ≡ p ≡ q ∨ r ≡ r ∨ p ≡ p ∨ q ≡ q ∨ r ∨ v
= <Symmetry and associativity of ≡ and ∨>
p ≡ q ≡ p ∨ q ≡ r ≡ p ∨ r≡ q ∨ r ≡ p ∨ q ∨ r
= <(3.55)>
(p ∧ q) ∧ r
3.38 Idempotency of ∧: p ∧ p ≡ p
3.39 Identity of ∧: p ∧ true ≡ p
p ∧ true ≡ p
= <Golden rule(3.35) with q:=true —replace two equivalents>
p ∨ true ≡ true
3.40 Zero of ∧: p ∧ false ≡ false
3.41 Distributivity of ∧ over ∧: p ∧ (q ∧ r) ≡ (p ∧ q) ∧ (p ∧ r)
3.42 Contradiction: p ∧ ¬p ≡ false
3.43 Absorption:
1. p ∧ (p ∨ q) ≡ p
2. p ∨ (p ∧ q) ≡ p
3.44 Absorption:
1. p ∧ (¬p ∨ q) ≡ p ∧ q
p ∧ (¬p ∨ q)
= <Golden rule(3.35), with q:=¬p∨q>
p ≡ ¬p ∨ q ≡ p ∧ ¬p ∨ q
= <Excluded middle(3.28)>
p ≡ ¬p ∨ q ≡ true ∨ q
= <(3.29), true ∨ p ≡ true>
2. p ∨ (¬p ∧ q) ≡ p ∨ q
3.45 Distributivity of ∨ over ∧:p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
3.46 Distributivity of ∧ over ∨: p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
3.47 De Morgan:
1. ¬(p ∧ q) ≡ ¬p ∨ ¬q
2. ¬(p ∨ q) ≡ ¬p ∧ ¬q
3.48 p ∧ q ≡ p ∧ ¬q ≡ ¬p
3.49 p ∧ (q ≡ r) ≡ p ∧ q ≡ p ∧ r ≡ p
p ∧ (q ≡ r) ≡ p
= <Golden rule, with q:=q≡r —replace two equivalents>
p ∨ (q ≡ r) ≡ q ≡ r
= <Distributivity of ∨ over ≡(3.27)>
p ∨ q ≡ p ∨ r ≡ q ≡ r
= <Symmetry of ≡(3.2)>
p ∨ q ≡ q ≡ p ∨ r ≡ r
= <Golden rule, twice —replace p∨q≡q and p∨r≡r>
p ∧ q ≡ p ≡ p ∧ r ≡ p
= <Symmetry of ≡(3.2), with q:=p∨q≡p∨r>
p ∧ q ≡ p ∧ r
3.50 p ∧ (q ≡ p) ≡ p ∧ q
3.51 Replacement: (p ≡ q) ∧ (r ≡ p) ≡ (p ≡ q) ∧ (r ≡ q)
3.52 Definition of ≡: p ≡ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q)
3.53 Exclusive or: p ≢ q ≡ (¬p ∧ q) ∨ (p ∧ ¬q)
3.54 Principle: Lemmas can provide structure, bring to light interesting facts, and ultimately shorten a proof.
3.55 (p ∧ q) ∧ r ≡ p ≡ q ≡ r ≡ p ∨ q ≡ q ∨ r ≡ r ∨ p ≡ p ∨ q ∨ r
3.56 Heuristic: Exploit the ability to parse theorems like the Golden rule in many different ways.
3.57 Axiom, Definition of Implication:
p → q ≡ p ∨ q ≡ q
3.58 Axiom, Consequence:
p ⇐ q ≡ q → p
3.59 Definition of Implication: p → q ≡ ¬p ∨ q
3.60 Definition of Implication: p → q ≡ p ∧ q ≡ p
3.61 Contrapositive: p → q ≡ ¬q → ¬p
3.62 p → (q ≡ r) ≡ p ∧ q ≡ p ∧ r
p → (q ≡ r)
= <Definition of implication(3.60)>
p ∧ (q ≡ r) ≡ p
= <(3.49), p ∧ (q ≡ r) ≡ p ∧ q ≡ p ∧ r ≡ p>
p ∧ q ≡ p ∧ r
3.63 Distributivity of → over ≡: p → (q ≡ r) ≡ p → q ≡ p → r
3.64 p → (q → r) ≡ (p → q) → (p → r)
3.65 Currying: p ∧ q → r ≡ p → (q → r)
3.66 p ∧ (p → q) ≡ p ∧ q
3.67 p ∧ (q → p) ≡ p
3.68 p ∨ (p → q) ≡ true
3.69 p ∨ (q → p) ≡ q → p
3.70 p ∨ q → p ∧ q ≡ p ≡ q
3.71 Reflexivity of →: p → p ≡ true
3.72 Right zero of →: p → true ≡ true
3.73 Left identity of →: true → p ≡ p
3.74 p → false ≡ ¬p
3.75 false → p ≡ true
3.76 Weakening/strengthening:
(a) p → p ∨ q Weakening
(b) p ∧ q → p Weakening
(c) p ∧ q → p ∨ q Weakening
(d) p ∨ (q ∧ r) → p ∨ q Weakening
(e) p ∧ q → p ∧ (q ∨ r) Weakening
The more rows in the truth table that are labeled as "false," the stronger it becomes.
3.77 Modus ponens: p ∧ (p → q) → q
3.78 (p → r) ∧ (q → r) ≡ (p ∨ q → r)
3.79 (p → r) ∧ (¬p → r) ≡ r
3.80 Mutual implication: (p → q) ∧ (q → p) ≡ p ≡ q
(p → q) ∧ (q → p)
= <Definition of implication(3.59), twice>
(¬p ∨ q) ∧ (¬q ∨ p)
= <Distributivity of ∧ over ∨(3.46), twice>
(¬p ∧ ¬q) ∨ (¬p ∧ p) ∨ (q ∧ ¬q) ∨ (q ∧ p)
= <Contradiction(3.42), twice; Identity of ∨(3.30), twice>
(¬p ∧ ¬q) ∨ (q ∧ p)
= <Alternative definition of ≡(3.52)>
p ≡ q
3.81 Antisymmetry: (p → q) ∧ (q → p) → (p ≡ q)
3.82 Transitivity:
(a) (p → q) ∧ (q → r) → (p → r)
= <Currying(3.65), with p,q:=(p → q) ∧ (q → r),p —to shunt the p in the consequent to the antecedent>
p ∧ (p → q) ∧ (q → r) → r
= <(3.66) —replace first two conjuncts>
p ∧ q ∧ (q → r) → r
= <3.66 —again, to replace second and third conjuncts —with p,q:=q,r>
p ∧ q ∧ r → r —Strengthening(3.76b)
(b) (p ≡ q) ∧ (q → r) → (p → r)
(c) (p → q) ∧ (q ≡ r) → (p → r)
3.83 Axiom, Leibniz: (e = f) → (E[z:=e]=E[z:=f]) (E any expression)
Inference rule Leibniz: "if X = Y is valid, i.e. true in all states, then so is E[z:=X] = E[z:=Y]".
Axiom(3.83): "if e = f is true in a state, then E[z:=e] = E[z:=f] is true in that state.".
diff: E=false∧z,e=true,f=false
E[z:=e]=E[z:=f] is true but e = f is false.
3.84 Substitution:
(a) (e = f) ∧ E[z:=e] ≡ (e = f) ∧ E[z:=f]
(b) (e = f) → E[z:=e] ≡ (e = f) → E[z:=f]
(c) q ∧ (e = f) → E[z:=e] ≡ q ∧ (e = f) → E[z:=f]
3.85 Replace by true:
(a) p → E[z:=p] ≡ p → E[z:=true]
(b) q ∧ p → E[z:=p] ≡ q ∧ p → E[z:=true]
3.86 Replace by false:
(a) E[z:=p] → p ≡ E[z:=false] → p
(b) E[z:=p] → p ∨ q ≡ E[z:=false] → p ∨ q
3.87 Replace by true: p ∧ E[z:=p] ≡ p ∧ E[z:=true]
3.88 Replace by false: p ∨ E[z:=p] ≡ p ∨ E[z:=false]
3.89 Shannon: E[z:=p] ≡ (p ∧ E[z:=true]) ∨ (¬p ∧ E[z:=false])
3.1 We have defined ≡ using three axioms. Assuming that the symbol true is identified
with the symbol true of the previous chapter on boolean expressions, do the axioms
uniquely identify operator ≡? Answer the question by seeing which of the 16 possible
binary operators o (say) given in the truth table on page 26 satisfy ((p o q) o r) o (p o (q o r)),
p o q q o p, and true o q q. (For example, the operator given by the last column does not
satisfy true o q o q, since the operator always yields f.)
Answer: The axioms indeed uniquely determine the operator ≡.
3.2 Use truth tables to show that axiom (3.1), (3.2), and (3.3) are valid (true in every state).
Answer:
|p|q|r|3-1|3-2|3-3|
|t|t|t| t | t | t |
|f|f|f| t | t | t |
|t|f|f| t | t | t |
|f|t|t| t | t | t |
|f|t|f| t | t | t |
|t|f|t| t | t | t |
|f|f|t| t | t | t |
|t|t|f| t | t | t |
Based on the truth table analysis, it is confirmed that
axioms (3.1), (3.2), and (3.3) hold true in every state,
as their corresponding logical expressions consistently
evaluate to true across all possible combinations of truth values.
3.3 Prove Reflexivity of ≡(3.5), p ≡ p.
Answer:
p ≡ p
= <Symmetry of ≡(3.2) —replace first p by p≡q≡q>
P:p
Q:p≡q≡q
E:r≡p
p ≡ q ≡ q ≡ p —Symmetry of ≡(3.2)
3.4 Prove the following metatheorm. Q ≡ true is a theorem iff Q is a theorem.
Answer:
|Q|true|Q ≡ true|
|t| t| t|
|f| t| f|
By examining the truth table for the given metatheorem, we can
conclude that the statement "Q ≡ true is a theorem iff Q is a
theorem" is indeed valid.
3.5 Prove the following metatheorem. Any two theorems are equivalent.
Answer:
true ≡ true
= <Identity of ≡(3.3) —replace second true by q=q>
P:true
Q:q≡q
E:true≡r
true ≡ q ≡ q —Identity of ≡(3.3)
3.6 Assume that operator ≡ is identified with operator ≡ of Sec. 2.1
(see Exercise 3.1) and true is identified with the symbol true of Sec. 2.1.
Prove that axioms (3.8) and (3.9) uniquely define operator ¬.
That is, determine which of the four prefix operators o defined in the
truth table on page 26 satisfy false ≡ otrue and o(p ≡ q) ≡ op ≡ q.
Answer:
|0|1|2|3|4|false≡¬true|¬(p≡q)≡¬p≡q|
|t|t|t|f|f| t | t |
|f|t|f|t|f| t | t |
Through an analysis of the truth table for the four prefix operators,
it becomes evident that column number 1 distinctly determines the operator ¬.
3.7 Prove theorem (3.11) in three different ways: start with ¬p ≡ q and transform
it to p ≡ ¬q, start with ¬p ≡ p and transform it into q ≡ ¬q, and start with
¬p and transform it into q ≡ p ≡ ¬q. Compare these three proofs and the one
given on page 47. Which is simpler or shorter?
Answer: The first one is simpler and shorter as shown below.
¬p ≡ q
= <Distributivity of ¬ over ≡(3.9)>
¬(q ≡ p)
= <Distributivity of ¬ over ≡(3.9)>
p ≡ ¬q
¬p ≡ p
= <Distributivity of ¬ over ≡(3.9)>
¬(p ≡ p)
= <Reflexivity of ≡(3.5)>
¬true
= <Identity of ≡(3.3)>
¬(q ≡ q)
= <Distributivity of ¬ over ≡(3.9)>
q ≡ ¬q
¬p
= <Symmetry of ≡(3.2) —replace p by p≡q≡q>
¬(p≡q≡q)
= <Distributivity of ¬ over ≡(3.9)>
q ≡ p ≡ ¬q
3.8 Prove double negation (3.12), ¬¬p≡p
Answer:
¬¬p ≡ p
= <Distributivity of ¬ over ≡(3.9), with p,q:=¬p,p —replace ¬¬p≡p
by ¬(¬p≡p)>
¬(¬p ≡ p)
= <Symmetry of ≡(3.2), with p,q:=¬p,p —replace ¬p≡p by p≡¬p>
¬(p ≡ ¬p)
= <Distributivity of ¬ over ≡(3.9), with p,q:=p,¬p —replace ¬(p≡¬p)
by ¬p≡¬p>
¬p ≡ ¬p
= <Reflexivity of ≡(3.5), with p:=¬p —replace ¬p≡¬p by p≡p>
p ≡ p
3.9 Prove Negation of false (3.13), ¬false ≡ true
Answer:
¬false ≡ true
= <Distributivity of ¬ over ≡(3.9), with p,q:=false,true>
¬(false ≡ true)
= <Symmetry of ≡(3.2), with p,q:=false,true>
¬(true ≡ false)
= <Distributivity of ¬ over ≡(3.9), with p,q:=true,false>
¬true ≡ false
= <Def. of false(3.8) —replace ¬true by false>
false ≡ false
= <Metatheorem(3.7), Reflexivity of ≡(3.5), with p:= false and
true(3.4) —replace false≡false by true
true
3.10 Prove theorem (3.14), (p ≢ q) ≡ ¬p ≡ q
Answer:
(p ≢ q)
= <Def. of ≢(3.10)>
¬(p ≡ q)
= <Distributivity of ¬ over ≡(3.9)>
¬p ≡ q
3.11 Prove theorem (3.15) by transforming ¬p ≡ p ≡ false to true using (3.11).
The proof should require only two uses of Leibniz.
Answer:
¬p ≡ p ≡ false
= <Def. of false(3.8) —replace false by ¬true>
¬p ≡ p ≡ ¬true
= <Identity of true(3.3) —replace true by q≡q>
¬p ≡ p ≡ ¬(q ≡ q)
= <Distributivity of ¬ over ≡(3.9)>
¬p ≡ p ≡ ¬q ≡ q
= <Symmetry of ≡(3.2), with p,q:=p≡¬q,q —replace p≡¬q≡q by q≡p≡¬q>
¬p ≡ q ≡ p ≡ ¬q —theorem(3.11)
3.12 Prove Associativity of ≢(3.17), ((p ≢ q) ≢ r) ≡ (p ≢ (q ≢ r)), using the heuristic
of Definition elimination (3.23) —by eliminating ≢, using a property of ≡,
and introducing ≢.
Answer:
((p ≢ q) ≢ r) ≡ (p ≢ (q ≢ r))
= <Def. of ≢(3.10) —replace (p≢q) by ¬(p≡q)>
(¬(p ≡ q)≢ r) ≡ (p ≢ (q ≢ r))
= <Def. of ≢(3.10) with p,q:=q,r —replace (q≢r) by ¬(q≡r)>
(¬(p ≡ q)≢ r) ≡ (p ≢ ¬(q ≡ r))
= <Def. of ≢(3.10) with p,q:¬(p≡q),r —replace ¬(p≡q)≢r by ¬(¬(p≡q)≡r)>
¬(¬(p ≡ q) ≡ r) ≡ (p ≢ ¬(q ≡ r))
= <Def. of ≢(3.10) with q:¬(q≡r) —replace p≢¬(q≡r) by ¬(p≡¬(q≡r))>
¬(¬(p ≡ q) ≡ r) ≡ ¬(p ≡ ¬(q ≡ r))
= <Symmetry of ≡(3.2), with p,q:=¬(¬(p≡q)≡r),¬(p≡¬(q≡r))>
¬(p ≡ ¬(q ≡ r)) ≡ ¬(¬(p ≡ q) ≡ r)
= <Def. of ≢(3.10), with q:=¬(r≡q)>
p ≢ ¬(q ≡ r) ≡ ¬(¬(p ≡ q) ≡ r)
= <Def. of ≢(3.10), with p,q:=¬(¬(q≡p),r>
p ≢ ¬(q ≡ r) ≡ ¬(p ≡ q) ≢ r
= <Def. of ≢(3.10), with p,q:=q,r —replace ¬(q≡r) by q≢r>
p ≢ q ≢ r ≡ ¬(p ≡ q) ≢ r
= <Def. of ≢(3.10), —replace ¬(p≡q) by p≢q>
(p ≢ (q ≢ r)) ≡ ((p ≢ q) ≢ r)
3.13 Prove Mutual associativity (3.18), ((p ≢ q) ≡ r)≡(p ≢ (q ≡ r)), using the heuristic of
Definition elimination(3.23) —by eliminating ≢, using a property of ≡, and
reintroducing ≢.
Answer:
((p ≢ q) ≡ r) ≡ (p ≢ (q ≡ r))
= <Def. of ≢(3.10) —replace (p≢q) by ¬(p≡q)>
(¬(p ≡ q) ≡ r) ≡ (p ≢ (q ≡ r))
= <Def. of ≢(3.10) with q:=(q ≡ r) —replace p≢(q≡r) by ¬(p≡(q≡r))>
(¬(p ≡ q) ≡ r) ≡ ¬(p ≡ (q ≡ r))
= <Symmetry of ≡(3.2), with p,q:=(¬(p≡q)≡r),¬(p≡(q≡r))>
¬(p ≡ (q ≡ r)) ≡ (¬(p ≡ q) ≡ r)
= <Def. of ≢(3.10) with q:=(q ≡ r) —replace ¬(p ≡ (q ≡ r)) by p≢(q≡r)>
p ≢ (q ≡ r) ≡ (¬(p ≡ q) ≡ r)
= <Def. of ≢(3.10) with p:=¬(p≡q) —replace ¬(p≡q) by p≢q>
p ≢ (q ≡ r) ≡ p ≢ q ≡ r
3.14 Prove Mutual interchangeability(3.19), p ≢ q ≡ r ≡ p ≡ q ≢ r, using the heuristic
of Definition elimination(3.23) —by eliminating ≢, using a property of ≡, and
reintroducing ≢.
Answer:
p ≢ q ≡ r ≡ p ≡ q ≢ r
= <Def. of ≢(3.10) —replace p≢q by ¬(p≡q)>
¬(p ≡ q) ≡ r ≡ p ≡ q ≢ r
= <Def. of ≢(3.10), with p,q:=q,r —replace q≢r by ¬(q≡r)>
¬(p ≡ q) ≡ r ≡ p ≡ ¬(q ≡ r)
= <Symmetry of ≡(3.2), with p,q:=¬(p≡q)≡r,p≡¬(q≡r)>
p ≡ ¬(q ≡ r) ≡ ¬(p ≡ q) ≡ r
= <Def. of ≢(3.10) —replace ¬(q≡r) by q≢r>
p ≡ q ≢ r ≡ ¬(p ≡ q) ≡ r
= <Def. of ≢(3.10) —replace ¬(p≡q) by p≢q>
p ≡ q ≢ r ≡ p ≢ q ≡ r
3.15 Assume that ≡, ¬, true, and false have meanings as given in Sec. 2.1.
Show that axioms (3.24)-(3.28) uniquely determine operator ∨ —only one of the
operators of the truth table for binary operators on page 26 can be assigned to it.
Answer:
OP = |T,T,T|F,F,F|T,F,F|F,T,T|F,T,F|T,F,T|F,F,T|T,T,F|
|3-24| T | | | | | | | |p=q≡q=p
|3-25| T | | | | | | | |(p=q)=r≡p=(q=r)
|3-26| T | | | | | | | |p=p≡p
|3-27| T | | | | | | | |p=(q≡r)≡p=q≡p=r
|3-28| F | | | | | | | |p=¬p
------------------------------------------------------
OP ≠ |T,T,T|F,F,F|T,F,F|F,T,T|F,T,F|T,F,T|F,F,T|T,T,F|
|3-24| F | | | | | | | |p≠q≡q≠p
|3-25| | | | | | | | |(p≠q)≠r≡p≠(q≠r)
|3-26| | | | | | | | |p≠p≡p
|3-27| | | | | | | | |p≠(q≡r)≡p≠q≡p≠r
|3-28| | | | | | | | |p≠¬p
------------------------------------------------------
OP ∨ |T,T,T|F,F,F|T,F,F|F,T,T|F,T,F|T,F,T|F,F,T|T,T,F|
|3-24| T | T | T | T | T | T | T | T |p∨q≡q∨p
|3-25| T | T | T | T | T | T | T | T |(p∨q)∨r≡p∨(q∨r)
|3-26| T | T | T | T | T | T | T | T |p∨p≡p
|3-27| T | T | T | T | T | T | T | T |p∨(q≡r)≡p∨q≡p∨r
|3-28| T | T | T | T | T | T | T | T |p∨¬p
------------------------------------------------------
OP ∧ |T,T,T|F,F,F|T,F,F|F,T,T|F,T,F|T,F,T|F,F,T|T,T,F|
|3-24| T | | | | | | | |p∧q≡q∧p
|3-25| T | | | | | | | |(p∧q)∧r≡p∧(q∧r)
|3-26| T | | | | | | | |p∧p≡p
|3-27| T | | | | | | | |p∧(q≡r)≡p∧q≡p∧r
|3-28| F | | | | | | | |p∧¬p
------------------------------------------------------
OP → |T,T,T|F,F,F|T,F,F|F,T,T|F,T,F|T,F,T|F,F,T|T,T,F|
|3-24| T | | | | | | | |p→q≡q→p
|3-25| T | | | | | | | |(p→q)→r≡p→(q→r)
|3-26| T | | | | | | | |p→p≡p
|3-27| T | | | | | | | |p→(q≡r)≡p→q≡p→r
|3-28| F | | | | | | | |p→¬p
------------------------------------------------------
OP ⇐ |T,T,T|F,F,F|T,F,F|F,T,T|F,T,F|T,F,T|F,F,T|T,T,F|
|3-24| T | T | | | | | | |p⇐q≡q⇐p
|3-25| T | F | | | | | | |(p⇐q)⇐r≡p⇐(q⇐r)
|3-26| T | | | | | | | |p⇐p≡p
|3-27| T | | | | | | | |p⇐(q≡r)≡p⇐q≡p⇐r
|3-28| T | | | | | | | |p⇐¬p
------------------------------------------------------
3.16 Prove that the zero of a binary operator ⊕ is unique. (An object is unique
if, when we assume that two of them B and C exist, we can prove B=C.)
Answer:
p ≢ q ≡ (¬p ∧ q) ∨ (p ∧ ¬q)
|t|t|f|
|f|f|f|
|t|f|t|
|f|t|t| No zero
3.17 Prove Identity of ∨(3.30), p ∨ false ≡ p, by transforming its more structured
side into its simpler side. Theorem (3.15) may be a suitable way to introduce
an equivalence.
Answer:
p ∨ false
= <Def. of false(3.8) —replace false by ¬true>
p ∨ ¬true
= <Identity of ≡(3.3), with q:=p —replace true by p≡p>
p ∨ ¬(p ≡ p)
= <Axiom, Distributivity of ¬ over ≡(3.9) and ∨ over ≡(3.27), with q:=p>
p ∨ ¬p ≡ p ∨ p
= <Excluded Middle(3.28) —replace p∨¬p by true>
true ≡ p ∨ p
= <Idempotency of ∨(3.26) —replace p∨p by p>
true ≡ p
= <Identity of ≡(3.3), with q:=p —replace true by p≡p>
p ≡ p ≡ p
= <Symmetry of ≡(3.2) with q:=p —replace p≡q≡q by p>
p
true
= <Identity of ≡(3.3), with q:=true —replace true by true≡true>
true ≡ true
= <Identity of ≡(3.3) with q:=p —replace true by p≡p>
true ≡ p ≡ p
= <Idempotency of ∨(3.26) —replace p by p∨p>
true ≡ p ∨ p ≡ p
= <Excluded middle(3.28) —replace true by p∨¬p>
p ∨ ¬p ≡ p ∨ p ≡ p
= <Distributivity of ∨ over ≡(3.27), with q:=p
—replace p∨¬p≡p∨p≡p by p∨(¬p≡p)>
p ∨ (¬p ≡ p) ≡ p
= <Distributivity of ¬ over ≡(3.9), with q:=p —replace (¬p≡p) by ¬(p≡p)>
p ∨ ¬(p ≡ p) ≡ p
= <Reflexivity of ≡(3.5) —replace p≡p by true>
p ∨ ¬true ≡ p
= <Def. of false(3.8) —replace ¬true by false>
p ∨ false ≡ p
3.18 Prove distributivity of ∨ over ∨(3.31), p ∨ (q ∨ r) ≡ (p ∨ q) ∨ (p ∨ r)
This proof requires only the symmetry, associativity, and idempotency of ∨.
Answer:
(p ∨ q) ∨ (p ∨ r)
= <Symmetry of ∨(3.24) —replace p∨q by q∨p>
(q ∨ p) ∨ (p ∨ r)
= <Associativity of ∨(3.25), with p,q:=(q ∨ p),p>
(q ∨ (p ∨ r)) ∨ p
= <Symmetry of ∨(3.24), with q:=r —replace p∨r by r∨p>
(q ∨ (r ∨ p)) ∨ p
= <Associativity of ∨(3.25), with p,q,r:=q,r,p>
((q ∨ r) ∨ p) ∨ p
= <Associativity of ∨(3.25), with p,q,r:=(q ∨ r),p,p>
(q ∨ r) ∨ (p ∨ p)
= <Symmetry of ∨(3.24) ,with p,q:=(q∨r),(p∨p) —replace (q∨r)∨(p∨p) by (p∨p)∨(q∨r)>
(p ∨ p) ∨ (q ∨ r)
= <Idempotency of ∨(3.26) —replace (p∨p) by p>
p ∨ (q ∨ r)
3.19 Prove theorem(3.32), p ∨ q ≡ p ∨ ¬q ≡ p. Note that the pattern p ∨ q ≡ p ∨ ¬q
matches the RHS of distributivity axiom(3.27), with r:=¬q,
so consider transforming p ∨ q ≡ p ∨ ¬q to p.
Answer:
p ∨ q ≡ p ∨ ¬q
= <Distributivity of ∨ over ≡(3.27), with r:=¬q>
p ∨ (q ≡ ¬q)
= <Symmetry of ≡(3.2), with p,q:=q,¬q>
p ∨ (¬q ≡ q)
= <Distributivity of ¬ over ≡(3.9), with p:=q>
p ∨ ¬(q ≡ q)
= <Identity of≡(3.3) —replace q≡q by true>
p ∨ ¬true
= <Def. of false(3.8) —replace ¬true by false>
p ∨ false
= <Identity of ∨(3.30) —replace p∨false by p>
p
3.20 Show the validity of the Golden rule, (3.35), by constructing a truth table for it.
Answer:
|p|q|p∧q|p∨q|(p≡q)≡(p∧q≡p∨q)|
|t|t| t | t | t |
|f|f| f | f | t |
|t|f| f | t | t |
|f|t| f | t | t |
3.21 Prove that the only distinct formulas (up to interchanging p and q) involving
variables p, q, ≡, and ∨ are: p, p ≡ p, p ≡ q, p ∨ q, p ∨ q ≡ q, and p ≡ q ≡ p ∨ q.
Answer:
SKIP
3.22 Prove Symmetry of ∧(3.36), p ∧ q ≡ q ∧ p, using the heuristic of Definition
Elimination(3.23) —eliminate ∧ (using its definition, the Golden rule),
manipulate, and then reintroduce ∧.
Answer:
p ∧ q ≡ q ∧ p
= <Golden rule(3.35) —replace p∧q by p≡q≡p∨q>
p ≡ q ≡ p ∨ q ≡ q ∧ p
= <Golden rule(3.35) with p,q:=q,p —replace q∧p by q≡p≡q∨p>
p ≡ q ≡ p ∨ q ≡ q ≡ p ≡ q ∨ p
= <Symmetry of ≡(3.2) with p,q:=p≡q≡p∨q,q≡p≡q∨p
—replace p≡q≡p∨q≡q≡p≡q∨p by q≡p≡q∨p≡p≡q≡p∨q>
q ≡ p ≡ q ∨ p ≡ p ≡ q ≡ p ∨ q
= <Golden rule(3.35) with p,q:=q,p —replace q≡p≡q∨p by q∧p>
q ∧ p ≡ p ≡ q ≡ p ∨ q
= <Golden rule(3.35) with —replace p≡q≡p∨q by p∧q>
q ∧ p ≡ p ∧ q
3.23 Prove Idempotency of ∧(3.38), p ∧ p ≡ p, using the heuristic of Definition
elimination (3.23) —eliminate ∧ (using its definition, the Golden rule) and manipulate.
Answer:
p ∧ p
= <Golden rule(3.38), with q:=p —replace p∧p by p≡p≡p∨p>
p ≡ p ≡ p ∨ p
= <Idempotency of ∨(3.26) —replace p∨p by p>
p ≡ p ≡ p
= <Symmetry of ≡(3.2) with q:=p —replace p≡q≡q by p>
p
3.24 Prove Zero of ∧(3.40), p ∧ false ≡ false, using the heuristic of definition
elimination(3.23) —eliminate ∧ (using its definition, the Golden rule) and
manipulate.
Answer:
p ∧ false
= <Golden rule(3.35) with q:=false —replace p∧false by p≡false≡p∨false>
p ≡ false ≡ p ∨ false
= <Identity of ∨(3.30) —replace p∨false by p>
p ≡ false ≡ p
= <Symmetry of ≡(3.2), with q:=false —replace p≡false by false≡p>
false ≡ p ≡ p
= <Def. of false(3.8) —replace false by ¬true>
¬true ≡ p ≡ p
= <Distributivity of ¬ over ≡(3.9), with p,q:=true,p
—replace ¬true≡p by ¬(true≡p)>
¬(true ≡ p) ≡ p
= <Associativity of ≡(3.1), with p,q,r:=true,p,p
—replace ¬(true≡p)≡p by ¬true≡(p≡p)>
¬true ≡ (p ≡ p)
= <Identity of ≡(3.3), with q:=p —replace p≡p by true>
¬true ≡ true
= <Distributivity of ¬ over ≡(3.9), with p,q:=true,true
—replace ¬true≡true by ¬(true≡true)>
¬(true≡true)
= <Identity of ≡(3.3), q:=true —replace true≡true by true>
¬true
= <Def. of false(3.8) —replace ¬true by false>
false
3.25 Prove Distributivity of ∧ over ∧(3.41), p ∧ (q ∧ r) ≡ (p ∧ q) ∧ (p ∧ r)
Answer:
p ∧ (q ∧ r)
= <Idempotency of ∧(3.38) —replace p by p∧p>
p ∧ p ∧ (q ∧ r)
= <Associativity of ∧(3.37) —replace p∧(q∧r) by (p∧q)∧r>
p ∧ (p ∧ q) ∧ r
= <Symmetry of ∧(3.36), with p,q:=p∧(p∧q),r —replace p∧(p∧q)∧r
by r∧p∧(p∧q)>
r ∧ p ∧ (p ∧ q)
= <Symmetry of ∧(3.36), with p,q:=r,p —replace r∧p by p∧r>
p ∧ r ∧ (p ∧ q)
3.26 Prove Contradiction(3.42), p ∧ ¬p ≡ false, using the heuristic of Definition
elimination(3.23) —eliminate ∧ (using its definition, the Golden rule) and
manipulate.
Answer:
p ∧ ¬p
= <Golden rule(3.35), with q:=¬p —replace p∧¬p by p≡¬p≡p∨¬p>
p ≡ ¬p ≡ p ∨ ¬p
= <Excluded middle(3.28) —replace p∨¬p by true>
p ≡ ¬p ≡ true
= <Identity of ≡(3.3), with q:=p —replace true by p≡p>
p ≡ ¬p ≡ p ≡ p
= <Symmetry of ≡(3.2), with q:=¬p —replace p≡¬p by ¬p≡p>
¬p ≡ p ≡ p ≡ p
= <Distributivity of ¬ over ≡(3.9) —replace ¬p≡p by ¬(p≡p)>
¬(p ≡ p) ≡ p ≡ p
= <Identity of ≡(3.3), with q:=p —replace p≡p by true>
¬true ≡ p ≡ p
= <Def. of false(3.8) —replace ¬true by false>
false ≡ p ≡ p
= <Identity of ∨(3.30) —replace p by p∨false>
false ≡ p ≡ p ∨ false
= <Symmetry of ≡(3.2),with p,q:=false,p —replace false≡p by p≡false>
p ≡ false ≡ p ∨ false
= <Golden rule(3.35), with q:=false —replace p≡false≡p∨false
by p ∧ false>
p ∧ false
= <Zero of ∧(3.40) —replace p∧false by false>
false
3.27 Prove Absorption(3.43a), p ∧ (p ∨ q) ≡ p, using the heuristic of Definition
elimination(3.23) —eliminate ∧ (using its definition, the Golden rule) and
manipulate.
Answer:
p ∧ (p ∨ q)
= <Golden rule(3.35), with q:=(p∨q) —replace p∧(p∨q) by p≡p∨q≡p∨p∨q>
p ≡ p ∨ q ≡ p ∨ p ∨ q
= <Idempotency of ∨(3.26) —replace p∨p by p>
p ≡ p ∨ q ≡ p ∨ q
= <Symmetry of ≡(3.32), with q:=p∨q —replace p≡p∨q≡p∨q by p>
p
3.28 Prove Absorption(3.43b), p ∨ (p ∧ q) ≡ p. Use the golden rule.
Answer:
p ∨ (p ∧ q)
= <Golden rule(3.35) —replace p∧q by p≡q≡p∨q>
p ∨ (p ≡ q ≡ p ∨ q)
= <Distributivity of ∨ over ≡(3.27), with q,r:=(p≡q),(p∨q)
—replace p∨(p≡q≡p∨q) by p∨(p≡q)≡p∨(p∨q)>
p ∨ p ∨ (p ≡ q) ≡ p ∨ (p ∨ q)
= <Distributivity of ∨ over ≡(3.27), —replace p∨(p≡q) by p∨p≡p∨q
p ∨ p ∨ p ≡ p ∨ q ≡ p ∨ (p ∨ q)
= <Associativity of ∨(3.25), with q,r:=p,q —replace p∨(p∨q)
by (p∨p)∨q)
p ∨ p ∨ p ≡ p ∨ q ≡ (p ∨ p) ∨ q
= <Idempotency of ∨(3.26) —replace p∨p by p>
p ∨ p ≡ p ∨ q ≡ (p ∨ p) ∨ q
= <Idempotency of ∨(3.26) —replace p∨p by p>
p ∨ p ≡ p ∨ q ≡ p ∨ q
= <Idempotency of ∨(3.26) —replace p∨p by p>
p ≡ p ∨ q ≡ p ∨ q
= <Symmetry of ∨(3.24), with q:=p∨q —replace p≡p∨q≡p∨q by p>
p
3.29 Prove Absorption(3.44b), p ∨ (¬p ∧ q) ≡ p ∨ q. Use the Golden rule and manipulate.
Answer:
p ∨ (¬p ∧ q)
= <Distributivity of ∨ over ∧(3.45), with q,r:=¬p,q —replace p∨(¬p∧q)
by p∨¬p∧p∨q>
p ∨ ¬p ∧ p ∨ q
= <Golden rules(3.35), with p,q:=(p∨¬p),(p∨q) —replace p∨¬p∧p∨q by
p∨¬p≡p∨q≡p∨¬p∨p∨q>
p ∨ ¬p ≡ p ∨ q ≡ p ∨ ¬p ∨ p ∨ q
= <Metatheorem(3.7), Excluded middle(3.28)
and Reflexivity of ≡(3.5) —replace p∨¬p by (p=p)>
(p ≡ p) ≡ p ∨ q ≡ (p ≡ p) ∨ p ∨ q
= <Golden rules(3.35), with p,q:=(p≡p),(p∨q) —replace (p≡p)≡p∨q≡true∨p∨q
by (p≡p)∧p∨q>
(p ≡ p) ∧ p ∨ q
= <Symmetry of ∧(3.36), with p,q:=(p≡p),p∨q —replace (p≡p)∧p∨q by p∨q∧true>
p ∨ q ∧ (p ≡ p)
= <Metatheorem(3.7), Reflexivity of ≡(3.5) and (3.4) —replace p≡p by true
and Identity of ∧(3.39) with p:=p∨q —replace p∨q∧true by p∨q>
p ∨ q
3.30 Prove Distributivity of ∨ over ∧(3.45), p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r),
using the heuristic of Definition elimination(3.23) —eliminate ∧ (using its
definition, the Golden rule), manipulate, and reintroduce ∧ using the Golden
rule again.
Answer:
p ∨ (q ∧ r)
= <Golden rule(3.35), with p,q:=q,r —replace q∧r by q≡r≡q∨r>
p ∨ (q ≡ r ≡ q ∨ r)
= <Distributivity of ∨ over ≡(3.27) with q,r:=q≡r,q∨r —replace p∨(q≡r≡q∨r)
by p∨(q≡r)≡p∨(q∨r)>
p ∨ (q ≡ r) ≡ p ∨ (q ∨ r)
= <Distributivity of ∨ over ≡(3.27) —replace p∨(q≡r) by p∨q≡p∨r>
p ∨ q ≡ p ∨ r ≡ p ∨ (q ∨ r)
= <Distributivity of ∨ over ∨(3.31), -replace p∨(q∨r) by p∨q∨r>
p ∨ q ≡ p ∨ r ≡ p ∨ q ∨ r
= <Golden rule(3.35), with p,q:=p∨q,p∨r —replace p∨q≡p∨r≡p∨q∨p∨r
by (p∨q)∧(p∨r)>
(p ∨ q) ∧ (p ∨ r)
3.31 Prove Distributivity of ∧ over ∨(3.46). It cannot be proved in the same manner
as Distributivity of ∨ over ∧(3.45) because ∧ does not distribute over ≡ so
nicely. Instead, prove it using (3.45) and Absorption.
Answer:
(p ∧ q) ∨ (p ∧ r)
= <Distributivity of ∨ over ∧(3.45), with p,q:=(p∧q),p —replace
(p∧q)∨(p∧r) by ((p∧q)∨p)∧((p∧q)∨r)>
((p ∧ q) ∨ p) ∧ ((p ∧ q) ∨ r)
= <Symmetry of ∨(3.24), with p,q:=(p∧q),p —replace (p∧q)∨p by p∨(p∧q)>
(p ∨ (p ∧ q)) ∧ ((p ∧ q) ∨ r)
= <Absorption(3.43b) —replace p∨(p∧q) by p>
p ∧ ((p ∧ q) ∨ r)
= <Symmetry of ∨(3.24), with p,q:=(p∧q),r —replace (p∧q)∨r by r∨(p∧q)>
p ∧ (r ∨ (p ∧ q))
= <Distributivity of ∨ over ∧(3.45), with p,q,r:=r,p,q —replace
r∨(p∧q) by (r∨p)∧(r∨q)>
p ∧ ((r ∨ p) ∧ (r ∨ q))
= <Associativity of ∧, with q,r:=(r∨p),(r∨q) —replace p∧((r∨p)∧(r∨q))
by (p∧(r∨p))∧(r∨q)>
(p ∧ (r ∨ p)) ∧ (r ∨ q)
= <Symmetry of ∨(3.24), with p,q:=r,p —replace r∨p by p∨r>
(p ∧ (p ∨ r)) ∧ (r ∨ q)
= <Absorption(3.43b), with q:=r —replace p∧(p∨r) by p>
p ∧ (r ∨ q)
= <Symmetry of ∨(3.24), with p,q:=q,r —replace r∨q by q∨r>
p ∧ (q ∨ r)
GOLDEN RULE(LOWLEVEL HARDCORE):
(p ∧ q) ∨ (p ∧ r)
= <Golden rule(3.35) —replace p∧q by p≡q≡p∨q>
(p ≡ q ≡ p ∨ q) ∨ (p ∧ r)
= <Golden rule(3.35) —replace p∧r by p≡r≡p∨r>
(p ≡ q ≡ p ∨ q) ∨ (p ≡ r ≡ p ∨ r)
= <Distributivity of ∨ over ≡, with p,q,r:=(p≡q≡p∨q),(p≡r),(p∨r)
—replace (p≡q≡p∨q)∨(p≡r≡p∨r) by (p≡q≡p∨q)∨(p≡r)≡(p≡q≡p∨q)∨(p∨r)>
(p ≡ q ≡ p ∨ q) ∨ (p ≡ r) ≡ (p ≡ q ≡ p ∨ q) ∨ (p ∨ r)
= <Distributivity of ∨ over ≡, with p,q,r:=(p≡q≡p∨q),p,r
—replace (p≡q≡p∨q)∨(p≡r) by ((p≡q≡p∨q)∨p)≡((p≡q≡p∨q)∨r)>
(p ≡ q ≡ p ∨ q) ∨ p ≡ (p ≡ q ≡ p ∨ q) ∨ r ≡ (p ≡ q ≡ p ∨ q) ∨ (p ∨ r)
= <Symmetry of ∨(3.24), with p,q:=(p≡q≡p∨q),p —replace (p≡q≡p∨q)∨p
by p∨(p≡q≡p∨q)>
p ∨ (p ≡ q ≡ p ∨ q) ≡ (p ≡ q ≡ p ∨ q) ∨ r ≡ (p ≡ q ≡ p ∨ q) ∨ (p ∨ r)
= <Distributivity of ∨ over ≡(3.27), with q,r:=(p≡q),(p∨q) —replace
p∨(p≡q≡p∨q) by (p∨(p≡q))≡(p∨(p∨q))>
p ∨ (p ≡ q) ≡ p ∨ (p ∨ q) ≡ (p ≡ q ≡ p ∨ q) ∨ r ≡ (p ≡ q ≡ p ∨ q) ∨ (p ∨ r)
= <Distributivity of ∨ over ≡(3.27), with q,r:=p,q —replace p∨(p≡q) by
p∨p≡p∨q>
p ∨ p ≡ p ∨ q ≡ p ∨ (p ∨ q) ≡ (p ≡ q ≡ p ∨ q) ∨ r ≡ (p ≡ q ≡ p ∨ q) ∨ (p ∨ r)
= <Symmetry of ∨(3.24) —replace p∨q by q∨p>
p ∨ p ≡ p ∨ q ≡ p ∨ (q ∨ p) ≡ (p ≡ q ≡ p ∨ q) ∨ r ≡ (p ≡ q ≡ p ∨ q) ∨ (p ∨ r)
= <Symmetry of ∨(3.24), with q:=(q∨p) —replace p∨(q∨p) by (q∨p)∨p>
p ∨ p ≡ p ∨ q ≡ (q ∨ p) ∨ p ≡ (p ≡ q ≡ p ∨ q) ∨ r ≡ (p ≡ q ≡ p ∨ q) ∨ (p ∨ r)
= <Associativity of ∨ over ∨(3.25), with p,q,r:=q,p,p —replace (q∨p)∨p by
q∨(p∨p)>
p ∨ p ≡ p ∨ q ≡ q ∨ (p ∨ p) ≡ (p ≡ q ≡ p ∨ q) ∨ r ≡ (p ≡ q ≡ p ∨ q) ∨ (p ∨ r)
= <Idempotency of ∨(3.26) —replace p∨p by p>
p ≡ p ∨ q ≡ q ∨ (p ∨ p) ≡ (p ≡ q ≡ p ∨ q) ∨ r ≡ (p ≡ q ≡ p ∨ q) ∨ (p ∨ r)
= <Idempotency of ∨(3.26) —replace p∨p by p>
p ≡ p ∨ q ≡ q ∨ p ≡ (p ≡ q ≡ p ∨ q) ∨ r ≡ (p ≡ q ≡ p ∨ q) ∨ (p ∨ r)
= <Symmetry of ∨(3.24), with p,q:=q,p —replace q∨p by p∨q>
p ≡ p ∨ q ≡ p ∨ q ≡ (p ≡ q ≡ p ∨ q) ∨ r ≡ (p ≡ q ≡ p ∨ q) ∨ (p ∨ r)
= <Symmetry of ∨(3.24), with q:=p∨q —replace p≡p∨q≡p∨q by p>
p ≡ (p ≡ q ≡ p ∨ q) ∨ r ≡ (p ≡ q ≡ p ∨ q) ∨ (p ∨ r)
= <Symmetry of ∨(3.24), with p,q:=(p≡q≡p∨q),r —replace (p≡q≡p∨q)∨r
by r∨(p≡q≡p∨q)>
p ≡ r ∨ (p ≡ q ≡ p ∨ q) ≡ (p ≡ q ≡ p ∨ q) ∨ (p ∨ r)
= <Distributivity of ∨ over ≡(3.27), with p,q,r:=r,(p≡q),(p∨q) —replace
r∨(p≡q≡p∨q) by (r∨(p≡q))≡(r∨(p∨q))>
p ≡ r ∨ (p ≡ q) ≡ r ∨ p ∨ q ≡ (p ≡ q ≡ p ∨ q) ∨ (p ∨ r)
= <Distributivity of ∨ over ≡(3.27), with p,q,r:=r,p,q —replace r∨(p≡q)
by (r∨p)≡(r∨q)>
p ≡ r ∨ p ≡ r ∨ q ≡ r ∨ p ∨ q ≡ (p ≡ q ≡ p ∨ q) ∨ (p ∨ r)
= <Symmetry of ∨(3.24), with p,q:=(p≡q≡p∨q),(p∨r) —replace (p≡q≡p∨q)∨(p∨r)
by (p∨r)∨(p≡q≡p∨q)>
p ≡ r ∨ p ≡ r ∨ q ≡ r ∨ p ∨ q ≡ (p ∨ r) ∨ (p ≡ q ≡ p ∨ q)
= <Distributivity of ∨ over ≡(3.27), with p,q,r:=(p∨r),(p≡q),(p∨q) —replace
(p∨r)∨(p≡q≡p∨q) by (p∨r)∨(p≡q)≡(p∨r)∨(p∨q)>
p ≡ r ∨ p ≡ r ∨ q ≡ r ∨ p ∨ q ≡ (p ∨ r) ∨ (p ≡ q) ≡ (p ∨ r) ∨ (p ∨ q)
= <Distributivity of ∨ over ≡(3.27), with p,q,r:=(p∨r),p,q —replace
(p∨r)∨(p≡q) by (p∨r)∨p≡(p∨r)∨q>
p ≡ r ∨ p ≡ r ∨ q ≡ r ∨ p ∨ q ≡ (p ∨ r) ∨ p ≡ (p ∨ r) ∨ q ≡ (p ∨ r) ∨ (p ∨ q)
= <Symmetry of ∨(3.24), with q:=r —replace p∨r by r∨p>
p ≡ r ∨ p ≡ r ∨ q ≡ r ∨ p ∨ q ≡ (r ∨ p) ∨ p ≡ (p ∨ r) ∨ q ≡ (p ∨ r) ∨ (p ∨ q)
= <Associativity of ∨(3.25), with p,q,r:=r,p,p —replace (r∨p)∨p by r∨(p∨p)>
p ≡ r ∨ p ≡ r ∨ q ≡ r ∨ p ∨ q ≡ r ∨ (p ∨ p) ≡ (p ∨ r) ∨ q ≡ (p ∨ r) ∨ (p ∨ q)
= <Idempotency of ∨(3.26) —replace p∨p by p>
p ≡ r ∨ p ≡ r ∨ q ≡ r ∨ p ∨ q ≡ r ∨ p ≡ (p ∨ r) ∨ q ≡ (p ∨ r) ∨ (p ∨ q)
= <Distributivity of ∨ over ∨(3.31), with p,q,r:=(p∨r),p,q —replace
(p∨r)∨(p∨q) by ((p ∨ r) ∨ p) ∨ ((p ∨ r) ∨ q)>
p ≡ r ∨ p ≡ r ∨ q ≡ r ∨ p ∨ q ≡ r ∨ p ≡ (p ∨ r) ∨ q ≡ ((p ∨ r) ∨ p) ∨ ((p ∨ r) ∨ q)
= <Symmetry of ∨(3.24), with q:=r —replace p∨r by r∨p>
p ≡ r ∨ p ≡ r ∨ q ≡ r ∨ p ∨ q ≡ r ∨ p ≡ (p ∨ r) ∨ q ≡ ((r ∨ p) ∨ p) ∨ ((p ∨ r) ∨ q)
= <Associativity of ∨(3.25), with p,q,r:=r,p,p —replace (r∨p)∨p
by r∨(p∨p)>
p ≡ r ∨ p ≡ r ∨ q ≡ r ∨ p ∨ q ≡ r ∨ p ≡ (p ∨ r) ∨ q ≡ (r ∨ (p ∨ p)) ∨ ((p ∨ r) ∨ q)
= <Idempotency of ∨(3.26) —replace p∨p by p>
p ≡ r ∨ p ≡ r ∨ q ≡ r ∨ p ∨ q ≡ r ∨ p ≡ (p ∨ r) ∨ q ≡ (r ∨ p) ∨ ((p ∨ r) ∨ q)
= <Symmetry of ∨(3.24), with p,q:=r,p —replace r∨p by p∨r>
p ≡ r ∨ p ≡ r ∨ q ≡ r ∨ p ∨ q ≡ r ∨ p ≡ (p ∨ r) ∨ q ≡ (p ∨ r) ∨ ((p ∨ r) ∨ q)
= <Symmetry of ∨(3.24), with p,q:=(p∨r),q —replace (p∨r)∨q by q ∨ (p ∨ r)>
p ≡ r ∨ p ≡ r ∨ q ≡ r ∨ p ∨ q ≡ r ∨ p ≡ (p ∨ r) ∨ q ≡ (p ∨ r) ∨ (q ∨ (p ∨ r))
= <Symmetry of ∨(3.24), with p,q:=(p∨r),(q∨(p∨r)) —replace (p∨r)∨(q∨(p∨r))
by (q ∨ (p ∨ r)) ∨ (p ∨ r)>
p ≡ r ∨ p ≡ r ∨ q ≡ r ∨ p ∨ q ≡ r ∨ p ≡ (p ∨ r) ∨ q ≡ (q ∨ (p ∨ r)) ∨ (p ∨ r)
= <Associativity of ∨(3.25), with p,q:=(q∨(p∨r)),p —replace (q∨(p∨r))∨(p∨r)
by q∨((p∨r)∨(p∨r))>
p ≡ r ∨ p ≡ r ∨ q ≡ r ∨ p ∨ q ≡ r ∨ p ≡ (p ∨ r) ∨ q ≡ q ∨ ((p ∨ r) ∨ (p ∨ r))
= <Distributivity of ∨ over ∨(3.31), with p,q,r:=(p∨r),p,r —replace (p∨r)∨(p∨r)
by ((p ∨ r) ∨ p) ∨ ((p ∨ r) ∨ r)>
p ≡ r ∨ p ≡ r ∨ q ≡ r ∨ p ∨ q ≡ r ∨ p ≡ (p ∨ r) ∨ q ≡ q ∨ (((p ∨ r) ∨ p) ∨ ((p ∨ r) ∨ r))
= <Symmetry of ∨(3.24), with q:=r —replace p∨r by r∨p>
p ≡ r ∨ p ≡ r ∨ q ≡ r ∨ p ∨ q ≡ r ∨ p ≡ (p ∨ r) ∨ q ≡ q ∨ (((r ∨ p) ∨ p) ∨ ((p ∨ r) ∨ r))
= <Associativity of ∨(3.25), with p,q,r:=r,p,p —replace (r∨p)∨p by r∨(p∨p)>
p ≡ r ∨ p ≡ r ∨ q ≡ r ∨ p ∨ q ≡ r ∨ p ≡ (p ∨ r) ∨ q ≡ q ∨ ((r ∨ (p ∨ p)) ∨ ((p ∨ r) ∨ r))
= <Idempotency of ∨(3.26) —replace p∨p by p>
p ≡ r ∨ p ≡ r ∨ q ≡ r ∨ p ∨ q ≡ r ∨ p ≡ (p ∨ r) ∨ q ≡ q ∨ ((r ∨ p) ∨ ((p ∨ r) ∨ r))
= <Associativity of ∨(3.25), with q:=r —replace (p∨r)∨r by p ∨ (r ∨ r)>
p ≡ r ∨ p ≡ r ∨ q ≡ r ∨ p ∨ q ≡ r ∨ p ≡ (p ∨ r) ∨ q ≡ q ∨ ((r ∨ p) ∨ (p ∨ (r ∨ r)))
= <Idempotency of ∨(3.26), with p:=r —replace r∨r by r>
p ≡ r ∨ p ≡ r ∨ q ≡ r ∨ p ∨ q ≡ r ∨ p ≡ (p ∨ r) ∨ q ≡ q ∨ ((r ∨ p) ∨ (p ∨ r))
= <Symmetry of ∨(3.24), with p,q:=r,p —replace r∨p by p∨r>
p ≡ r ∨ p ≡ r ∨ q ≡ r ∨ p ∨ q ≡ r ∨ p ≡ (p ∨ r) ∨ q ≡ q ∨ ((p ∨ r) ∨ (p ∨ r))
= <Idempotency of ∨(3.26), with p:=(p∨r) —replace (p∨r)∨(p∨r) by (p∨r)>
p ≡ r ∨ p ≡ r ∨ q ≡ r ∨ p ∨ q ≡ r ∨ p ≡ (p ∨ r) ∨ q ≡ q ∨ (p ∨ r)
= <Symmetry of ∨(3.24), with p=(p∨r) —replace (p∨r)∨q by q∨(p∨r )>
p ≡ r ∨ p ≡ r ∨ q ≡ r ∨ p ∨ q ≡ r ∨ p ≡ q ∨ (p ∨ r) ≡ q ∨ (p ∨ r)
= <Symmetry of ∨(3.24), with p,q:=r∨p,q∨(p∨r) —replace r∨p≡q∨(p∨r)≡q∨(p∨r)
by r∨p>
p ≡ r ∨ p ≡ r ∨ q ≡ r ∨ p ∨ q ≡ r ∨ p
= <Symmetry of ≡(3.2), with p,q:=(p≡r∨p≡r∨q≡r∨(p∨q)),r∨p —replace
p≡r∨p≡r∨q≡r∨(p∨q)≡r∨p by r∨p≡p≡r∨p≡r∨q≡r∨(p∨q)>
r ∨ p ≡ p ≡ r ∨ p ≡ r ∨ q ≡ r ∨ p ∨ q
= <Symmetry of ≡(3.2), with p,q:=r∨p,p —replace r∨p≡p by p≡r∨p>
p ≡ r ∨ p ≡ r ∨ p ≡ r ∨ q ≡ r ∨ p ∨ q
= <Symmetry of ≡(3.2), with q:=r∨p —replace p≡r∨p≡r∨p by p>
p ≡ r ∨ q ≡ r ∨ p ∨ q
= <Symmetry of ∨(3.24), with p:=r —replace r∨q by q∨r>
p ≡ q ∨ r ≡ r ∨ p ∨ q
= <Symmetry of ∨(3.24), with p,q:=r,p —replace r∨p by p∨r>
p ≡ q ∨ r ≡ p ∨ r ∨ q
= <Symmetry of ∨(3.24), with p:=r —replace r∨q by q∨r>
p ≡ q ∨ r ≡ p ∨ q ∨ r
= <Golden rule(3.35), with q:=q∨r —replace p≡q∨r≡p∨q∨r by p∧(q∨r)>
p ∧ (q ∨ r)
3.47 De Morgan:
1. ¬(p ∧ q) ≡ ¬ p ∨ ¬q
2. ¬(p ∨ q) ≡ ¬ p ∧ ¬q
3.32 Prove De Morgan(3.47a), ¬(p ∧ q) ≡ ¬p ∨ ¬q. Start by using the Golden rule;
(3.32) should come in handy.
Answer:
¬(p ∧ q)