-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconstraints.py
1682 lines (1368 loc) · 62.7 KB
/
constraints.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import division, print_function
from math import sqrt
from ase.geometry import find_mic
import numpy as np
import spglib
from numpy.linalg import inv
from ase import Atoms
from ase.spacegroup import crystal
from ase.geometry import wrap_positions
__all__ = ['symm_force','UnitCellFilter_symm','FixCartesian', 'FixBondLength', 'FixedMode', 'FixConstraintSingle',
'FixAtoms', 'UnitCellFilter', 'FixScaled', 'StrainFilter',
'FixedPlane', 'Filter', 'FixConstraint', 'FixedLine',
'FixBondLengths', 'FixInternals', 'Hookean', 'ExternalForce']
def dict2constraint(dct):
if dct['name'] not in __all__:
raise ValueError
return globals()[dct['name']](**dct['kwargs'])
def slice2enlist(s, n):
"""Convert a slice object into a list of (new, old) tuples."""
if isinstance(s, slice):
return enumerate(range(*s.indices(n)))
return enumerate(s)
def constrained_indices(atoms, only_include=None):
"""Returns a list of indices for the atoms that are constrained
by a constraint that is applied. By setting only_include to a
specific type of constraint you can make it only look for that
given constraint.
"""
indices = []
for constraint in atoms.constraints:
if only_include is not None:
if not isinstance(constraint, only_include):
continue
indices.extend(np.array(constraint.get_indices()))
return np.array(np.unique(indices))
class symm_force:
def __init__(self,final):
self.dataset= spglib.get_symmetry(final, symprec=1e-5)
self.final=final
def adjust_positions(self,atoms, newpositions):
structure=Atoms(self.final.get_chemical_symbols(), positions=atoms.positions , cell=atoms.get_cell())
# if spglib.get_spacegroup(structure, symprec=1e-5)!=spglib.get_spacegroup(self.final, symprec=1e-5):
if 1==1:
lattice_cur=atoms.get_cell()
reciprocal_lattice_cur= inv(np.transpose(lattice_cur))
cartesian_rotation_cur=np.zeros((len(self.dataset['rotations']),3,3))
cartesian_translation_cur=np.zeros((len(self.dataset['translations']),3))
for j in range(0,len(self.dataset['rotations'])):
cartesian_rotation_cur[j,:,:]=np.dot(np.transpose(lattice_cur),np.dot(self.dataset['rotations'][j],reciprocal_lattice_cur))
cartesian_translation_cur[j,:]=np.dot(np.transpose(lattice_cur),self.dataset['translations'][j])
symm= np.zeros((len(atoms), 3))
count= np.zeros((len(atoms),1))
for i in range(0,len(atoms)):
for j in range(0,len(self.dataset['rotations'])):
a= (np.dot(cartesian_rotation_cur[j,:,:], atoms.get_positions()[i]) + cartesian_translation_cur[j,:])
a = wrap_positions(positions=[a], cell=atoms.get_cell(), pbc=[1, 1, 1])
for k in range(0,len(atoms)):
if (np.linalg.norm(a - atoms.get_positions()[k]))<0.0001:
b=(np.dot(cartesian_rotation_cur[j,:,:], newpositions[i]) + cartesian_translation_cur[j,:])
symm[k]+=(wrap_positions(positions=[b], cell=atoms.get_cell(), pbc=[1, 1, 1])).reshape((3,))
count[k]+=1
for k in range(0,len(atoms)):
newpositions[k]=symm[k]/(1.0*count[k])
else:
pass
def adjust_forces(self, atoms, forces):
lattice_cur=atoms.get_cell()
reciprocal_lattice_cur= inv(np.transpose(lattice_cur))
cartesian_rotation_cur=np.zeros((len(self.dataset['rotations']),3,3))
cartesian_translation_cur=np.zeros((len(self.dataset['translations']),3))
for j in range(0,len(self.dataset['rotations'])):
cartesian_rotation_cur[j,:,:]=np.dot(np.transpose(lattice_cur),np.dot(self.dataset['rotations'][j],reciprocal_lattice_cur))
cartesian_translation_cur[j,:]=np.dot(np.transpose(lattice_cur),self.dataset['translations'][j])
symm= np.zeros((len(atoms), 3))
count= np.zeros((len(atoms),1))
for i in range(0,len(atoms)):
for j in range(0,len(self.dataset['rotations'])):
a= (np.dot(cartesian_rotation_cur[j,:,:], atoms.get_positions()[i]) + cartesian_translation_cur[j,:])
a = wrap_positions(positions=[a], cell=atoms.get_cell(), pbc=[1, 1, 1])
for k in range(0,len(atoms)):
if (np.linalg.norm(a - atoms.get_positions()[k]))<0.0001:
symm[k]+=(np.dot(cartesian_rotation_cur[j,:,:], forces[i]))
count[k]+=1
for k in range(0,len(atoms)):
forces[k]=symm[k]/(1.0*count[k])
"""
s1, s6, s5= forces[len(atoms)+1]
s6, s2, s4= forces[len(atoms)+2]
s5, s4, s3= forces[len(atoms)+3]
tensor=np.transpose([[s1, s6, s5],
[s6, s2, s4],
[s5, s4, s3]])
a=0
for j in range(0,len(self.dataset['rotations'])):
a+=np.dot(np.transpose(cartesian_rotation_cur[j,:,:]),np.dot(tensor,cartesian_rotation_cur[j,:,:]))
tensor= a/(1.0*len(self.dataset['rotations']))
forces[len(atoms)+1]= tensor[0,:]
forces[len(atoms)+2]= tensor[1,:]
forces[len(atoms)+3]= tensor[2,:]
"""
class FixConstraint:
"""Base class for classes that fix one or more atoms in some way."""
def index_shuffle(self, atoms, ind):
"""Change the indices.
When the ordering of the atoms in the Atoms object changes,
this method can be called to shuffle the indices of the
constraints.
ind -- List or tuple of indices.
"""
raise NotImplementedError
def repeat(self, m, n):
""" basic method to multiply by m, needs to know the length
of the underlying atoms object for the assignment of
multiplied constraints to work.
"""
msg = ("Repeat is not compatible with your atoms' constraints."
' Use atoms.set_constraint() before calling repeat to '
'remove your constraints.')
raise NotImplementedError(msg)
def adjust_momenta(self, atoms, momenta):
"""Adjusts momenta in identical manner to forces."""
self.adjust_forces(atoms, momenta)
def copy(self):
return dict2constraint(self.todict().copy())
class FixConstraintSingle(FixConstraint):
"""Base class for classes that fix a single atom."""
def __init__(self, a):
self.a = a
def index_shuffle(self, atoms, ind):
"""The atom index must be stored as self.a."""
newa = -1 # Signal error
for new, old in slice2enlist(ind, len(atoms)):
if old == self.a:
newa = new
break
if newa == -1:
raise IndexError('Constraint not part of slice')
self.a = newa
def get_indices(self):
return [self.a]
class FixAtoms(FixConstraint):
"""Constraint object for fixing some chosen atoms."""
def __init__(self, indices=None, mask=None):
"""Constrain chosen atoms.
Parameters
----------
indices : list of int
Indices for those atoms that should be constrained.
mask : list of bool
One boolean per atom indicating if the atom should be
constrained or not.
Examples
--------
Fix all Copper atoms:
>>> mask = [s == 'Cu' for s in atoms.get_chemical_symbols()]
>>> c = FixAtoms(mask=mask)
>>> atoms.set_constraint(c)
Fix all atoms with z-coordinate less than 1.0 Angstrom:
>>> c = FixAtoms(mask=atoms.positions[:, 2] < 1.0)
>>> atoms.set_constraint(c)
"""
if indices is None and mask is None:
raise ValueError('Use "indices" or "mask".')
if indices is not None and mask is not None:
raise ValueError('Use only one of "indices" and "mask".')
if mask is not None:
indices = np.arange(len(mask))[np.asarray(mask, bool)]
else:
# Check for duplicates:
srt = np.sort(indices)
if (np.diff(srt) == 0).any():
raise ValueError(
'FixAtoms: The indices array contained duplicates. '
'Perhaps you wanted to specify a mask instead, but '
'forgot the mask= keyword.')
self.index = np.asarray(indices, int)
if self.index.ndim != 1:
raise ValueError('Wrong argument to FixAtoms class!')
self.removed_dof = 3 * len(self.index)
def adjust_positions(self, atoms, new):
new[self.index] = atoms.positions[self.index]
def adjust_forces(self, atoms, forces):
forces[self.index] = 0.0
def index_shuffle(self, atoms, ind):
# See docstring of superclass
index = []
for new, old in slice2enlist(ind, len(atoms)):
if old in self.index:
index.append(new)
if len(index) == 0:
raise IndexError('All indices in FixAtoms not part of slice')
self.index = np.asarray(index, int)
def get_indices(self):
return self.index
def __repr__(self):
return 'FixAtoms(indices=%s)' % ints2string(self.index)
def todict(self):
return {'name': 'FixAtoms',
'kwargs': {'indices': self.index}}
def repeat(self, m, n):
i0 = 0
natoms = 0
if isinstance(m, int):
m = (m, m, m)
index_new = []
for m2 in range(m[2]):
for m1 in range(m[1]):
for m0 in range(m[0]):
i1 = i0 + n
index_new += [i + natoms for i in self.index]
i0 = i1
natoms += n
self.index = np.asarray(index_new, int)
return self
def delete_atoms(self, indices, natoms):
"""Removes atom number ind from the index array, if present.
Required for removing atoms with existing FixAtoms constraints.
"""
i = np.zeros(natoms, int) - 1
new = np.delete(np.arange(natoms), indices)
i[new] = np.arange(len(new))
index = i[self.index]
self.index = index[index >= 0]
if len(self.index) == 0:
return None
return self
def ints2string(x, threshold=None):
"""Convert ndarray of ints to string."""
if threshold is None or len(x) <= threshold:
return str(x.tolist())
return str(x[:threshold].tolist())[:-1] + ', ...]'
class FixBondLengths(FixConstraint):
maxiter = 500
def __init__(self, pairs, tolerance=1e-13, iterations=None):
"""iterations:
Ignored"""
self.pairs = np.asarray(pairs)
self.tolerance = tolerance
self.removed_dof = len(pairs)
def adjust_positions(self, atoms, new):
old = atoms.positions
masses = atoms.get_masses()
for i in range(self.maxiter):
converged = True
for a, b in self.pairs:
r0 = old[a] - old[b]
d0 = find_mic([r0], atoms.cell, atoms._pbc)[0][0]
d1 = new[a] - new[b] - r0 + d0
m = 1 / (1 / masses[a] + 1 / masses[b])
x = 0.5 * (np.dot(d0, d0) - np.dot(d1, d1)) / np.dot(d0, d1)
if abs(x) > self.tolerance:
new[a] += x * m / masses[a] * d0
new[b] -= x * m / masses[b] * d0
converged = False
if converged:
break
else:
raise RuntimeError('Did not converge')
def adjust_momenta(self, atoms, p):
old = atoms.positions
masses = atoms.get_masses()
for i in range(self.maxiter):
converged = True
for a, b in self.pairs:
d = old[a] - old[b]
d = find_mic([d], atoms.cell, atoms._pbc)[0][0]
dv = p[a] / masses[a] - p[b] / masses[b]
m = 1 / (1 / masses[a] + 1 / masses[b])
x = -np.dot(dv, d) / np.dot(d, d)
if abs(x) > self.tolerance:
p[a] += x * m * d
p[b] -= x * m * d
converged = False
if converged:
break
else:
raise RuntimeError('Did not converge')
def adjust_forces(self, atoms, forces):
self.constraint_forces = -forces
self.adjust_momenta(atoms, forces)
self.constraint_forces += forces
def get_indices(self):
return np.unique(self.pairs.ravel())
def todict(self):
return {'name': 'FixBondLengths',
'kwargs': {'pairs': self.pairs,
'tolerance': self.tolerance}}
def index_shuffle(self, atoms, ind):
"""Shuffle the indices of the two atoms in this constraint"""
map = np.zeros(len(atoms), int)
map[ind] = 1
n = map.sum()
map[:] = -1
map[ind] = range(n)
pairs = map[self.pairs]
self.pairs = pairs[(pairs != -1).all(1)]
if len(self.pairs) == 0:
raise IndexError('Constraint not part of slice')
def FixBondLength(a1, a2):
"""Fix distance between atoms with indices a1 and a2."""
return FixBondLengths([(a1, a2)])
class FixedMode(FixConstraint):
"""Constrain atoms to move along directions orthogonal to
a given mode only."""
def __init__(self, mode):
self.mode = (np.asarray(mode) / np.sqrt((mode**2).sum())).reshape(-1)
def adjust_positions(self, atoms, newpositions):
newpositions = newpositions.ravel()
oldpositions = atoms.positions.ravel()
step = newpositions - oldpositions
newpositions -= self.mode * np.dot(step, self.mode)
def adjust_forces(self, atoms, forces):
forces = forces.ravel()
forces -= self.mode * np.dot(forces, self.mode)
def index_shuffle(self, atoms, ind):
eps = 1e-12
mode = self.mode.reshape(-1, 3)
excluded = np.ones(len(mode), dtype=bool)
excluded[ind] = False
if (abs(mode[excluded]) > eps).any():
raise IndexError('All nonzero parts of mode not in slice')
self.mode = mode[ind].ravel()
def get_indices(self):
# This function will never properly work because it works on all
# atoms and it has no idea how to tell how many atoms it is
# attached to. If it is being used, surely the user knows
# everything is being constrained.
return []
def todict(self):
return {'name': 'FixedMode',
'kwargs': {'mode': self.mode}}
def __repr__(self):
return 'FixedMode(%s)' % self.mode.tolist()
class FixedPlane(FixConstraintSingle):
"""Constrain an atom index *a* to move in a given plane only.
The plane is defined by its normal vector *direction*."""
removed_dof = 1
def __init__(self, a, direction):
self.a = a
self.dir = np.asarray(direction) / sqrt(np.dot(direction, direction))
def adjust_positions(self, atoms, newpositions):
step = newpositions[self.a] - atoms.positions[self.a]
newpositions[self.a] -= self.dir * np.dot(step, self.dir)
def adjust_forces(self, atoms, forces):
forces[self.a] -= self.dir * np.dot(forces[self.a], self.dir)
def todict(self):
return {'name': 'FixedPlane',
'kwargs': {'a': self.a, 'direction': self.dir}}
def __repr__(self):
return 'FixedPlane(%d, %s)' % (self.a, self.dir.tolist())
class FixedLine(FixConstraintSingle):
"""Constrain an atom index *a* to move on a given line only.
The line is defined by its vector *direction*."""
removed_dof = 2
def __init__(self, a, direction):
self.a = a
self.dir = np.asarray(direction) / sqrt(np.dot(direction, direction))
def adjust_positions(self, atoms, newpositions):
step = newpositions[self.a] - atoms.positions[self.a]
x = np.dot(step, self.dir)
newpositions[self.a] = atoms.positions[self.a] + x * self.dir
def adjust_forces(self, atoms, forces):
forces[self.a] = self.dir * np.dot(forces[self.a], self.dir)
def __repr__(self):
return 'FixedLine(%d, %s)' % (self.a, self.dir.tolist())
def todict(self):
return {'name': 'FixedLine',
'kwargs': {'a': self.a, 'direction': self.dir}}
class FixCartesian(FixConstraintSingle):
'Fix an atom index *a* in the directions of the cartesian coordinates.'
def __init__(self, a, mask=(1, 1, 1)):
self.a = a
self.mask = ~np.asarray(mask, bool)
self.removed_dof = 3 - self.mask.sum()
def adjust_positions(self, atoms, new):
step = new[self.a] - atoms.positions[self.a]
step *= self.mask
new[self.a] = atoms.positions[self.a] + step
def adjust_forces(self, atoms, forces):
forces[self.a] *= self.mask
def __repr__(self):
return 'FixCartesian(a={0}, mask={1})'.format(self.a,
list(~self.mask))
def todict(self):
return {'name': 'FixCartesian',
'kwargs': {'a': self.a, 'mask': ~self.mask}}
class FixScaled(FixConstraintSingle):
'Fix an atom index *a* in the directions of the unit vectors.'
def __init__(self, cell, a, mask=(1, 1, 1)):
self.cell = np.asarray(cell)
self.a = a
self.mask = np.array(mask, bool)
self.removed_dof = self.mask.sum()
def adjust_positions(self, atoms, new):
scaled_old = np.linalg.solve(self.cell.T, atoms.positions.T).T
scaled_new = np.linalg.solve(self.cell.T, new.T).T
for n in range(3):
if self.mask[n]:
scaled_new[self.a, n] = scaled_old[self.a, n]
new[self.a] = np.dot(scaled_new, self.cell)[self.a]
def adjust_forces(self, atoms, forces):
scaled_forces = np.linalg.solve(self.cell.T, forces.T).T
scaled_forces[self.a] *= -(self.mask - 1)
forces[self.a] = np.dot(scaled_forces, self.cell)[self.a]
def todict(self):
return {'name': 'FixScaled',
'kwargs': {'a': self.a,
'cell': self.cell,
'mask': self.mask}}
def __repr__(self):
return 'FixScaled(%s, %d, %s)' % (repr(self.cell),
self.a,
repr(self.mask))
# TODO: Better interface might be to use dictionaries in place of very
# nested lists/tuples
class FixInternals(FixConstraint):
"""Constraint object for fixing multiple internal coordinates.
Allows fixing bonds, angles, and dihedrals."""
def __init__(self, bonds=None, angles=None, dihedrals=None,
epsilon=1.e-7):
self.bonds = bonds or []
self.angles = angles or []
self.dihedrals = dihedrals or []
# Initialize these at run-time:
self.n = 0
self.constraints = []
self.epsilon = epsilon
self.initialized = False
self.removed_dof = (len(self.bonds) +
len(self.angles) +
len(self.dihedrals))
def initialize(self, atoms):
if self.initialized:
return
masses = atoms.get_masses()
self.n = len(self.bonds) + len(self.angles) + len(self.dihedrals)
self.constraints = []
for bond in self.bonds:
masses_bond = masses.take(bond[1])
self.constraints.append(self.FixBondLengthAlt(bond[0], bond[1],
masses_bond))
for angle in self.angles:
masses_angle = masses.take(angle[1])
self.constraints.append(self.FixAngle(angle[0], angle[1],
masses_angle))
for dihedral in self.dihedrals:
masses_dihedral = masses.take(dihedral[1])
self.constraints.append(self.FixDihedral(dihedral[0],
dihedral[1],
masses_dihedral))
self.initialized = True
def get_indices(self):
cons = self.bonds + self.dihedrals + self.angles
return np.unique(np.ravel([constraint[1]
for constraint in cons]))
def todict(self):
return {'name': 'FixInternals',
'kwargs': {'bonds': self.bonds,
'angles': self.angles,
'dihedrals': self.dihedrals,
'epsilon': self.epsilon}}
def adjust_positions(self, atoms, new):
self.initialize(atoms)
for constraint in self.constraints:
constraint.set_h_vectors(atoms.positions)
for j in range(50):
maxerr = 0.0
for constraint in self.constraints:
constraint.adjust_positions(atoms.positions, new)
maxerr = max(abs(constraint.sigma), maxerr)
if maxerr < self.epsilon:
return
raise ValueError('Shake did not converge.')
def adjust_forces(self, atoms, forces):
"""Project out translations and rotations and all other constraints"""
self.initialize(atoms)
positions = atoms.positions
N = len(forces)
list2_constraints = list(np.zeros((6, N, 3)))
tx, ty, tz, rx, ry, rz = list2_constraints
list_constraints = [r.ravel() for r in list2_constraints]
tx[:, 0] = 1.0
ty[:, 1] = 1.0
tz[:, 2] = 1.0
ff = forces.ravel()
# Calculate the center of mass
center = positions.sum(axis=0) / N
rx[:, 1] = -(positions[:, 2] - center[2])
rx[:, 2] = positions[:, 1] - center[1]
ry[:, 0] = positions[:, 2] - center[2]
ry[:, 2] = -(positions[:, 0] - center[0])
rz[:, 0] = -(positions[:, 1] - center[1])
rz[:, 1] = positions[:, 0] - center[0]
# Normalizing transl., rotat. constraints
for r in list2_constraints:
r /= np.linalg.norm(r.ravel())
# Add all angle, etc. constraint vectors
for constraint in self.constraints:
constraint.adjust_forces(positions, forces)
list_constraints.insert(0, constraint.h)
# QR DECOMPOSITION - GRAM SCHMIDT
list_constraints = [r.ravel() for r in list_constraints]
aa = np.column_stack(list_constraints)
(aa, bb) = np.linalg.qr(aa)
# Projection
hh = []
for i, constraint in enumerate(self.constraints):
hh.append(aa[:, i] * np.row_stack(aa[:, i]))
txx = aa[:, self.n] * np.row_stack(aa[:, self.n])
tyy = aa[:, self.n + 1] * np.row_stack(aa[:, self.n + 1])
tzz = aa[:, self.n + 2] * np.row_stack(aa[:, self.n + 2])
rxx = aa[:, self.n + 3] * np.row_stack(aa[:, self.n + 3])
ryy = aa[:, self.n + 4] * np.row_stack(aa[:, self.n + 4])
rzz = aa[:, self.n + 5] * np.row_stack(aa[:, self.n + 5])
T = txx + tyy + tzz + rxx + ryy + rzz
for vec in hh:
T += vec
ff = np.dot(T, np.row_stack(ff))
forces[:, :] -= np.dot(T, np.row_stack(ff)).reshape(-1, 3)
def __repr__(self):
constraints = repr(self.constraints)
return 'FixInternals(_copy_init=%s, epsilon=%s)' % (constraints,
repr(self.epsilon))
def __str__(self):
return '\n'.join([repr(c) for c in self.constraints])
# Classes for internal use in FixInternals
class FixBondLengthAlt:
"""Constraint subobject for fixing bond length within FixInternals."""
def __init__(self, bond, indices, masses, maxstep=0.01):
"""Fix distance between atoms with indices a1, a2."""
self.indices = indices
self.bond = bond
self.h1 = None
self.h2 = None
self.masses = masses
self.h = []
self.sigma = 1.
def set_h_vectors(self, pos):
dist1 = pos[self.indices[0]] - pos[self.indices[1]]
self.h1 = 2 * dist1
self.h2 = -self.h1
def adjust_positions(self, old, new):
h1 = self.h1 / self.masses[0]
h2 = self.h2 / self.masses[1]
dist1 = new[self.indices[0]] - new[self.indices[1]]
dist = np.dot(dist1, dist1)
self.sigma = dist - self.bond**2
lamda = -self.sigma / (2 * np.dot(dist1, (h1 - h2)))
new[self.indices[0]] += lamda * h1
new[self.indices[1]] += lamda * h2
def adjust_forces(self, positions, forces):
self.h1 = 2 * (positions[self.indices[0]] -
positions[self.indices[1]])
self.h2 = -self.h1
self.h = np.zeros([len(forces) * 3])
self.h[(self.indices[0]) * 3] = self.h1[0]
self.h[(self.indices[0]) * 3 + 1] = self.h1[1]
self.h[(self.indices[0]) * 3 + 2] = self.h1[2]
self.h[(self.indices[1]) * 3] = self.h2[0]
self.h[(self.indices[1]) * 3 + 1] = self.h2[1]
self.h[(self.indices[1]) * 3 + 2] = self.h2[2]
self.h /= np.linalg.norm(self.h)
def __repr__(self):
return 'FixBondLengthAlt(%s, %d, %d)' % \
(repr(self.bond), self.indices[0], self.indices[1])
class FixAngle:
"""Constraint object for fixing an angle within
FixInternals."""
def __init__(self, angle, indices, masses):
"""Fix atom movement to construct a constant angle."""
self.indices = indices
self.a1m, self.a2m, self.a3m = masses
self.angle = np.cos(angle)
self.h1 = self.h2 = self.h3 = None
self.h = []
self.sigma = 1.
def set_h_vectors(self, pos):
r21 = pos[self.indices[0]] - pos[self.indices[1]]
r21_len = np.linalg.norm(r21)
e21 = r21 / r21_len
r23 = pos[self.indices[2]] - pos[self.indices[1]]
r23_len = np.linalg.norm(r23)
e23 = r23 / r23_len
angle = np.dot(e21, e23)
self.h1 = -2 * angle * ((angle * e21 - e23) / (r21_len))
self.h3 = -2 * angle * ((angle * e23 - e21) / (r23_len))
self.h2 = -(self.h1 + self.h3)
def adjust_positions(self, oldpositions, newpositions):
r21 = newpositions[self.indices[0]] - newpositions[self.indices[1]]
r21_len = np.linalg.norm(r21)
e21 = r21 / r21_len
r23 = newpositions[self.indices[2]] - newpositions[self.indices[1]]
r23_len = np.linalg.norm(r23)
e23 = r23 / r23_len
angle = np.dot(e21, e23)
self.sigma = (angle - self.angle) * (angle + self.angle)
h1 = self.h1 / self.a1m
h3 = self.h3 / self.a3m
h2 = self.h2 / self.a2m
h21 = h1 - h2
h23 = h3 - h2
# Calculating new positions
deriv = (((np.dot(r21, h23) + np.dot(r23, h21)) /
(r21_len * r23_len)) -
(np.dot(r21, h21) / (r21_len * r21_len) +
np.dot(r23, h23) / (r23_len * r23_len)) * angle)
deriv *= 2 * angle
lamda = -self.sigma / deriv
newpositions[self.indices[0]] += lamda * h1
newpositions[self.indices[1]] += lamda * h2
newpositions[self.indices[2]] += lamda * h3
def adjust_forces(self, positions, forces):
r21 = positions[self.indices[0]] - positions[self.indices[1]]
r21_len = np.linalg.norm(r21)
e21 = r21 / r21_len
r23 = positions[self.indices[2]] - positions[self.indices[1]]
r23_len = np.linalg.norm(r23)
e23 = r23 / r23_len
angle = np.dot(e21, e23)
self.h1 = -2 * angle * (angle * e21 - e23) / r21_len
self.h3 = -2 * angle * (angle * e23 - e21) / r23_len
self.h2 = -(self.h1 + self.h3)
self.h = np.zeros([len(positions) * 3])
self.h[(self.indices[0]) * 3] = self.h1[0]
self.h[(self.indices[0]) * 3 + 1] = self.h1[1]
self.h[(self.indices[0]) * 3 + 2] = self.h1[2]
self.h[(self.indices[1]) * 3] = self.h2[0]
self.h[(self.indices[1]) * 3 + 1] = self.h2[1]
self.h[(self.indices[1]) * 3 + 2] = self.h2[2]
self.h[(self.indices[2]) * 3] = self.h3[0]
self.h[(self.indices[2]) * 3 + 1] = self.h3[1]
self.h[(self.indices[2]) * 3 + 2] = self.h3[2]
self.h /= np.linalg.norm(self.h)
def __repr__(self):
return 'FixAngle(%s, %f)' % (tuple(self.indices),
np.arccos(self.angle))
class FixDihedral:
"""Constraint object for fixing an dihedral using
the shake algorithm. This one allows also other constraints."""
def __init__(self, angle, indices, masses):
"""Fix atom movement to construct a constant dihedral angle."""
self.indices = indices
self.a1m, self.a2m, self.a3m, self.a4m = masses
self.angle = np.cos(angle)
self.h1 = self.h2 = self.h3 = self.h4 = None
self.h = []
self.sigma = 1.
def set_h_vectors(self, pos):
r12 = pos[self.indices[1]] - pos[self.indices[0]]
r23 = pos[self.indices[2]] - pos[self.indices[1]]
r23_len = np.linalg.norm(r23)
e23 = r23 / r23_len
r34 = pos[self.indices[3]] - pos[self.indices[2]]
a = -r12 - np.dot(-r12, e23) * e23
a_len = np.linalg.norm(a)
ea = a / a_len
b = r34 - np.dot(r34, e23) * e23
b_len = np.linalg.norm(b)
eb = b / b_len
angle = np.dot(ea, eb).clip(-1.0, 1.0)
self.h1 = (eb - angle * ea) / a_len
self.h4 = (ea - angle * eb) / b_len
self.h2 = self.h1 * (np.dot(-r12, e23) / r23_len - 1)
self.h2 += np.dot(r34, e23) / r23_len * self.h4
self.h3 = -self.h4 * (np.dot(r34, e23) / r23_len + 1)
self.h3 += np.dot(r12, e23) / r23_len * self.h1
def adjust_positions(self, oldpositions, newpositions):
r12 = newpositions[self.indices[1]] - newpositions[self.indices[0]]
r23 = newpositions[self.indices[2]] - newpositions[self.indices[1]]
r34 = newpositions[self.indices[3]] - newpositions[self.indices[2]]
n1 = np.cross(r12, r23)
n1_len = np.linalg.norm(n1)
n1e = n1 / n1_len
n2 = np.cross(r23, r34)
n2_len = np.linalg.norm(n2)
n2e = n2 / n2_len
angle = np.dot(n1e, n2e).clip(-1.0, 1.0)
self.sigma = (angle - self.angle) * (angle + self.angle)
h1 = self.h1 / self.a1m
h2 = self.h2 / self.a2m
h3 = self.h3 / self.a3m
h4 = self.h4 / self.a4m
h12 = h2 - h1
h23 = h3 - h2
h34 = h4 - h3
deriv = ((np.dot(n1, np.cross(r34, h23) + np.cross(h34, r23)) +
np.dot(n2, np.cross(r23, h12) + np.cross(h23, r12))) /
(n1_len * n2_len))
deriv -= (((np.dot(n1, np.cross(r23, h12) + np.cross(h23, r12)) /
n1_len**2) +
(np.dot(n2, np.cross(r34, h23) + np.cross(h34, r23)) /
n2_len**2)) * angle)
deriv *= -2 * angle
lamda = -self.sigma / deriv
newpositions[self.indices[0]] += lamda * h1
newpositions[self.indices[1]] += lamda * h2
newpositions[self.indices[2]] += lamda * h3
newpositions[self.indices[3]] += lamda * h4
def adjust_forces(self, positions, forces):
r12 = positions[self.indices[1]] - positions[self.indices[0]]
r23 = positions[self.indices[2]] - positions[self.indices[1]]
r23_len = np.linalg.norm(r23)
e23 = r23 / r23_len
r34 = positions[self.indices[3]] - positions[self.indices[2]]
a = -r12 - np.dot(-r12, e23) * e23
a_len = np.linalg.norm(a)
ea = a / a_len
b = r34 - np.dot(r34, e23) * e23
b_len = np.linalg.norm(b)
eb = b / b_len
angle = np.dot(ea, eb).clip(-1.0, 1.0)
self.h1 = (eb - angle * ea) / a_len
self.h4 = (ea - angle * eb) / b_len
self.h2 = self.h1 * (np.dot(-r12, e23) / r23_len - 1)
self.h2 += np.dot(r34, e23) / r23_len * self.h4
self.h3 = -self.h4 * (np.dot(r34, e23) / r23_len + 1)
self.h3 -= np.dot(-r12, e23) / r23_len * self.h1
self.h = np.zeros([len(positions) * 3])
self.h[(self.indices[0]) * 3] = self.h1[0]
self.h[(self.indices[0]) * 3 + 1] = self.h1[1]
self.h[(self.indices[0]) * 3 + 2] = self.h1[2]
self.h[(self.indices[1]) * 3] = self.h2[0]
self.h[(self.indices[1]) * 3 + 1] = self.h2[1]
self.h[(self.indices[1]) * 3 + 2] = self.h2[2]
self.h[(self.indices[2]) * 3] = self.h3[0]
self.h[(self.indices[2]) * 3 + 1] = self.h3[1]
self.h[(self.indices[2]) * 3 + 2] = self.h3[2]
self.h[(self.indices[3]) * 3] = self.h4[0]
self.h[(self.indices[3]) * 3 + 1] = self.h4[1]
self.h[(self.indices[3]) * 3 + 2] = self.h4[2]
self.h /= np.linalg.norm(self.h)
def __repr__(self):
return 'FixDihedral(%s, %f)' % (tuple(self.indices), self.angle)
class Hookean(FixConstraint):
"""Applies a Hookean restorative force between a pair of atoms, an atom
and a point, or an atom and a plane."""
def __init__(self, a1, a2, k, rt=None):
"""Forces two atoms to stay close together by applying no force if
they are below a threshold length, rt, and applying a Hookean
restorative force when the distance between them exceeds rt. Can
also be used to tether an atom to a fixed point in space or to a
distance above a plane.
a1 : int
Index of atom 1
a2 : one of three options
1) index of atom 2
2) a fixed point in cartesian space to which to tether a1
3) a plane given as (A, B, C, D) in A x + B y + C z + D = 0.
k : float
Hooke's law (spring) constant to apply when distance
exceeds threshold_length. Units of eV A^-2.
rt : float
The threshold length below which there is no force. The
length is 1) between two atoms, 2) between atom and point.
This argument is not supplied in case 3. Units of A.
If a plane is specified, the Hooke's law force is applied if the atom
is on the normal side of the plane. For instance, the plane with
(A, B, C, D) = (0, 0, 1, -7) defines a plane in the xy plane with a z
intercept of +7 and a normal vector pointing in the +z direction.
If the atom has z > 7, then a downward force would be applied of
k * (atom.z - 7). The same plane with the normal vector pointing in
the -z direction would be given by (A, B, C, D) = (0, 0, -1, 7).
"""
if isinstance(a2, int):
self._type = 'two atoms'
self.indices = [a1, a2]
elif len(a2) == 3:
self._type = 'point'
self.index = a1
self.origin = np.array(a2)
elif len(a2) == 4:
self._type = 'plane'
self.index = a1
self.plane = a2
else:
raise RuntimeError('Unknown type for a2')
self.threshold = rt
self.spring = k
def todict(self):
dct = {'name': 'Hookean'}
dct['kwargs'] = {'rt': self.threshold,
'k': self.spring}
if self._type == 'two atoms':
dct['kwargs']['a1'] = self.indices[0]
dct['kwargs']['a2'] = self.indices[1]
elif self._type == 'point':
dct['kwargs']['a1'] = self.index
dct['kwargs']['a2'] = self.origin
elif self._type == 'plane':
dct['kwargs']['a1'] = self.index
dct['kwargs']['a2'] = self.plane
else:
raise NotImplementedError('Bad type: %s' % self._type)
return dct
def adjust_positions(self, atoms, newpositions):
pass
def adjust_momenta(self, atoms, momenta):
pass
def adjust_forces(self, atoms, forces):
positions = atoms.positions
if self._type == 'plane':
A, B, C, D = self.plane
x, y, z = positions[self.index]
d = ((A * x + B * y + C * z + D) /
np.sqrt(A**2 + B**2 + C**2))
if d < 0:
return
magnitude = self.spring * d
direction = - np.array((A, B, C)) / np.linalg.norm((A, B, C))
forces[self.index] += direction * magnitude
return
if self._type == 'two atoms':
p1, p2 = positions[self.indices]
elif self._type == 'point':
p1 = positions[self.index]
p2 = self.origin
displace = p2 - p1
bondlength = np.linalg.norm(displace)
if bondlength > self.threshold:
magnitude = self.spring * (bondlength - self.threshold)
direction = displace / np.linalg.norm(displace)
if self._type == 'two atoms':
forces[self.indices[0]] += direction * magnitude
forces[self.indices[1]] -= direction * magnitude
else:
forces[self.index] += direction * magnitude
def adjust_potential_energy(self, atoms):
"""Returns the difference to the potential energy due to an active
constraint. (That is, the quantity returned is to be added to the
potential energy.)"""
positions = atoms.positions
if self._type == 'plane':
A, B, C, D = self.plane
x, y, z = positions[self.index]
d = ((A * x + B * y + C * z + D) /
np.sqrt(A**2 + B**2 + C**2))