This repository has been archived by the owner on Jan 13, 2025. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4.5k
/
Copy pathbloom.rs
158 lines (147 loc) · 4.99 KB
/
bloom.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
//! Simple Bloom Filter
use bv::BitVec;
use fnv::FnvHasher;
use rand::{self, Rng};
use serde::{Deserialize, Serialize};
use std::{cmp, hash::Hasher, marker::PhantomData};
/// Generate a stable hash of `self` for each `hash_index`
/// Best effort can be made for uniqueness of each hash.
pub trait BloomHashIndex {
fn hash_at_index(&self, hash_index: u64) -> u64;
}
#[derive(Serialize, Deserialize, Default, Clone, Debug, PartialEq)]
pub struct Bloom<T: BloomHashIndex> {
pub keys: Vec<u64>,
pub bits: BitVec<u64>,
num_bits_set: u64,
_phantom: PhantomData<T>,
}
impl<T: BloomHashIndex> Bloom<T> {
pub fn new(num_bits: usize, keys: Vec<u64>) -> Self {
let bits = BitVec::new_fill(false, num_bits as u64);
Bloom {
keys,
bits,
num_bits_set: 0,
_phantom: PhantomData::default(),
}
}
/// create filter optimal for num size given the `FALSE_RATE`
/// the keys are randomized for picking data out of a collision resistant hash of size
/// `keysize` bytes
/// https://hur.st/bloomfilter/
pub fn random(num_items: usize, false_rate: f64, max_bits: usize) -> Self {
let m = Self::num_bits(num_items as f64, false_rate);
let num_bits = cmp::max(1, cmp::min(m as usize, max_bits));
let num_keys = Self::num_keys(num_bits as f64, num_items as f64) as usize;
let keys: Vec<u64> = (0..num_keys).map(|_| rand::thread_rng().gen()).collect();
Self::new(num_bits, keys)
}
pub fn num_bits(num_items: f64, false_rate: f64) -> f64 {
let n = num_items;
let p = false_rate;
((n * p.ln()) / (1f64 / 2f64.powf(2f64.ln())).ln()).ceil()
}
pub fn num_keys(num_bits: f64, num_items: f64) -> f64 {
let n = num_items;
let m = num_bits;
1f64.max(((m / n) * 2f64.ln()).round())
}
fn pos(&self, key: &T, k: u64) -> u64 {
key.hash_at_index(k) % self.bits.len()
}
pub fn clear(&mut self) {
self.bits = BitVec::new_fill(false, self.bits.len());
self.num_bits_set = 0;
}
pub fn add(&mut self, key: &T) {
for k in &self.keys {
let pos = self.pos(key, *k);
if !self.bits.get(pos) {
self.num_bits_set += 1;
self.bits.set(pos, true);
}
}
}
pub fn contains(&self, key: &T) -> bool {
for k in &self.keys {
let pos = self.pos(key, *k);
if !self.bits.get(pos) {
return false;
}
}
true
}
}
fn slice_hash(slice: &[u8], hash_index: u64) -> u64 {
let mut hasher = FnvHasher::with_key(hash_index);
hasher.write(slice);
hasher.finish()
}
impl<T: AsRef<[u8]>> BloomHashIndex for T {
fn hash_at_index(&self, hash_index: u64) -> u64 {
slice_hash(self.as_ref(), hash_index)
}
}
#[cfg(test)]
mod test {
use super::*;
use solana_sdk::hash::{hash, Hash};
#[test]
fn test_bloom_filter() {
//empty
let bloom: Bloom<Hash> = Bloom::random(0, 0.1, 100);
assert_eq!(bloom.keys.len(), 0);
assert_eq!(bloom.bits.len(), 1);
//normal
let bloom: Bloom<Hash> = Bloom::random(10, 0.1, 100);
assert_eq!(bloom.keys.len(), 3);
assert_eq!(bloom.bits.len(), 48);
//saturated
let bloom: Bloom<Hash> = Bloom::random(100, 0.1, 100);
assert_eq!(bloom.keys.len(), 1);
assert_eq!(bloom.bits.len(), 100);
}
#[test]
fn test_add_contains() {
let mut bloom: Bloom<Hash> = Bloom::random(100, 0.1, 100);
//known keys to avoid false positives in the test
bloom.keys = vec![0, 1, 2, 3];
let key = hash(b"hello");
assert!(!bloom.contains(&key));
bloom.add(&key);
assert!(bloom.contains(&key));
let key = hash(b"world");
assert!(!bloom.contains(&key));
bloom.add(&key);
assert!(bloom.contains(&key));
}
#[test]
fn test_random() {
let mut b1: Bloom<Hash> = Bloom::random(10, 0.1, 100);
let mut b2: Bloom<Hash> = Bloom::random(10, 0.1, 100);
b1.keys.sort();
b2.keys.sort();
assert_ne!(b1.keys, b2.keys);
}
// Bloom filter math in python
// n number of items
// p false rate
// m number of bits
// k number of keys
//
// n = ceil(m / (-k / log(1 - exp(log(p) / k))))
// p = pow(1 - exp(-k / (m / n)), k)
// m = ceil((n * log(p)) / log(1 / pow(2, log(2))));
// k = round((m / n) * log(2));
#[test]
fn test_filter_math() {
assert_eq!(Bloom::<Hash>::num_bits(100f64, 0.1f64) as u64, 480u64);
assert_eq!(Bloom::<Hash>::num_bits(100f64, 0.01f64) as u64, 959u64);
assert_eq!(Bloom::<Hash>::num_keys(1000f64, 50f64) as u64, 14u64);
assert_eq!(Bloom::<Hash>::num_keys(2000f64, 50f64) as u64, 28u64);
assert_eq!(Bloom::<Hash>::num_keys(2000f64, 25f64) as u64, 55u64);
//ensure min keys is 1
assert_eq!(Bloom::<Hash>::num_keys(20f64, 1000f64) as u64, 1u64);
}
}