-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTopKFrequentElements.py
60 lines (43 loc) · 1.41 KB
/
TopKFrequentElements.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import collections
import heapq
from typing import List
# O(n) time || O(n) space
def top_k_frequent_quickselect(self, nums: List[int], k: int) -> List[int]:
pairs = list(collections.Counter(nums).items()) # [(num, freq)]
quickselect(pairs, 0, len(pairs) - 1, k)
return [pair[0] for pair in pairs[:k]]
def quickselect(arr, low, high, k):
if low == high:
return
i = partition(arr, low, high)
if i == k:
return
elif i < k:
quickselect(arr, i + 1, high, k)
else:
quickselect(arr, low, i - 1, k)
def partition(arr, low, high):
pivot = arr[high][1]
i = low
for j in range(low, high):
if arr[j][1] > pivot:
arr[j], arr[i] = arr[i], arr[j]
i += 1
arr[i], arr[high] = arr[high], arr[i]
return i
# O(n) time || O(n) space
def top_k_frequent_linear(self, nums: List[int], k: int) -> List[int]:
cnt = collections.Counter(nums)
buckets = [[] for _ in range(len(nums) + 1)]
for num, freq in cnt.items():
buckets[freq].append(num)
res = []
for i in range(len(buckets) - 1, 0, -1):
for num in buckets[i]:
res.append(num)
if len(res) == k:
return res
# O(n * log(k)) time || O(n + k) space
def top_k_frequent_heap(self, nums: List[int], k: int) -> List[int]:
cnt = collections.Counter(nums)
return heapq.nlargest(k, cnt.keys(), key=cnt.get)