-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMinimumPathSum.py
91 lines (68 loc) · 2.65 KB
/
MinimumPathSum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import math
from functools import lru_cache
from typing import List
# O(n * m) time || O(n * m) space
# dp(i, j) = grid[i][j] + min(dp(i, j + 1), dp(i + 1, j))
def min_path_sum_top_down(self, grid: List[List[int]]) -> int:
m, n = len(grid), len(grid[0])
@lru_cache(None)
def dp(i, j):
if i == m or j == n:
return math.inf
if i == m - 1 and j == n - 1:
return grid[i][j]
return grid[i][j] + min(dp(i, j + 1), dp(i + 1, j))
return dp(0, 0)
# O(n * m) time || O(n * m) space
def min_path_sum_bottom_up(self, grid: List[List[int]]) -> int:
m, n = len(grid), len(grid[0])
dp = [[0] * n for _ in range(m)]
for i in range(m - 1, -1, -1):
for j in range(n - 1, -1, -1):
if i == m - 1 and j != n - 1:
dp[i][j] = grid[i][j] + dp[i][j + 1]
elif j == n - 1 and i != m - 1:
dp[i][j] = grid[i][j] + dp[i + 1][j]
elif i != m - 1 and j != n - 1:
dp[i][j] = grid[i][j] + min(dp[i + 1][j], dp[i][j + 1])
else:
dp[i][j] = grid[i][j]
return dp[0][0]
# O(n * m) time || O(n) space
def min_path_sum_1d_bottom_up(self, grid: List[List[int]]) -> int:
m, n = len(grid), len(grid[0])
dp = [0] * n
for i in range(m - 1, -1, -1):
for j in range(n - 1, -1, -1):
if i == m - 1 and j != n - 1:
dp[j] = grid[i][j] + dp[j + 1]
elif j == n - 1 and i != m - 1:
dp[j] = grid[i][j] + dp[j]
elif i != m - 1 and j != n - 1:
dp[j] = grid[i][j] + min(dp[j], dp[j + 1])
else:
dp[j] = grid[i][j]
return dp[0]
# O(n * m) time || O(1) space
def min_path_sum_bottom_up_constant_space(self, grid: List[List[int]]) -> int:
m, n = len(grid), len(grid[0])
for i in range(m - 1, -1, -1):
for j in range(n - 1, -1, -1):
if i == m - 1 and j != n - 1:
grid[i][j] = grid[i][j] + grid[i][j + 1]
elif j == n - 1 and i != m - 1:
grid[i][j] = grid[i][j] + grid[i + 1][j]
elif i != m - 1 and j != n - 1:
grid[i][j] = grid[i][j] + min(grid[i + 1][j], grid[i][j + 1])
return grid[0][0]
# O(n * m) time || O(1) space
def min_path_sum_bottom_up_constant_space_readable(self, grid: List[List[int]]) -> int:
m, n = len(grid), len(grid[0])
for i in range(1, m):
grid[i][0] += grid[i - 1][0]
for j in range(1, n):
grid[0][j] += grid[0][j - 1]
for i in range(1, m):
for j in range(1, n):
grid[i][j] += min(grid[i - 1][j], grid[i][j - 1])
return grid[m - 1][n - 1]