-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCLIP_models_adapter_prior2.py
1035 lines (873 loc) · 44.3 KB
/
CLIP_models_adapter_prior2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from collections import OrderedDict
from typing import Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn, Tensor
import math
import pdb
from typing import Any, Union, List
from CLIP.clip.simple_tokenizer import SimpleTokenizer as _Tokenizer
from pkg_resources import packaging
from typing import Optional, List
from transformer_module import TransformerDecoderLayer, TransformerDecoderLayer_womhsa
import random
def _get_activation_fn(activation):
"""Return an activation function given a string"""
if activation == "relu":
return F.relu
if activation == "gelu":
return F.gelu
if activation == "glu":
return F.glu
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
class TransformerDecoderLayer(nn.Module):
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
activation="relu", normalize_before=False):
super().__init__()
# self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward_post(self, tgt, memory,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None):
# q = k = self.with_pos_embed(tgt, query_pos)
# tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask,
# key_padding_mask=tgt_key_padding_mask)[0]
# tgt = tgt + self.dropout1(tgt2)
# tgt = self.norm1(tgt)
tgt2, attentions = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos),
key=self.with_pos_embed(memory, pos),
value=memory, attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask)
tgt = tgt + self.dropout2(tgt2)
tgt = self.norm2(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
tgt = tgt + self.dropout3(tgt2)
tgt = self.norm3(tgt)
return tgt
def forward_pre(self, tgt, memory,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None):
tgt2 = self.norm1(tgt)
# q = k = self.with_pos_embed(tgt2, query_pos)
# tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
# key_padding_mask=tgt_key_padding_mask)[0]
# tgt = tgt + self.dropout1(tgt2)
# tgt2 = self.norm2(tgt)
tgt2, attentions = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos),
key=self.with_pos_embed(memory, pos),
value=memory, attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask)
tgt = tgt + self.dropout2(tgt2)
tgt2 = self.norm3(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
tgt = tgt + self.dropout3(tgt2)
return tgt
def forward(self, tgt, memory,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None):
if self.normalize_before:
return self.forward_pre(tgt, memory, tgt_mask, memory_mask,
tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos)
return self.forward_post(tgt, memory, tgt_mask, memory_mask,
tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos)
import copy
def _get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
class Extractor(nn.Module):
def __init__(self, d_model, bottleneck, dropout,):
super().__init__()
'''
update prior using F_vit
K, V: F_vit
Q: prior
'''
self.d_model = d_model
self.down_size = bottleneck
self.dropout = dropout
self.down_proj = nn.Linear(self.d_model, self.down_size)
self.mhsa = TransformerDecoderLayer(self.down_size, 3, self.down_size*3,
self.dropout, 'relu', normalize_before=True)
def forward(self, prior, F_vit):
# pdb.set_trace()
query, mask = prior
query = query.transpose(0,1) ## 18(#instance) x batchsize x down_size
context = self.down_proj(F_vit) # 197 x batchsize x down_size
new_prior = self.mhsa(tgt=query, memory=context,)
return (new_prior.transpose(0,1), mask)
class Adapter(nn.Module):
def __init__(self,
config=None,
d_model=None,
bottleneck=None,
dropout=0.1,
init_option="bert",
adapter_scalar="1.0",
adapter_num_layers=1,
):
super().__init__()
self.n_embd = config.d_model if d_model is None else d_model
self.down_size = config.attn_bn if bottleneck is None else bottleneck
if adapter_scalar == "learnable_scalar":
self.scale = nn.Parameter(torch.ones(d_model)*1e-9)
else:
self.scale = float(adapter_scalar)
self.down_proj = nn.Linear(self.n_embd, self.down_size)
self.non_linear_func = nn.ReLU()
self.up_proj = nn.Linear(self.down_size, self.n_embd)
self.adapter_num_layers = adapter_num_layers
self.dropout = dropout
if init_option == "bert":
raise NotImplementedError
elif init_option == "lora":
with torch.no_grad():
nn.init.kaiming_uniform_(self.down_proj.weight, a=math.sqrt(5))
nn.init.zeros_(self.up_proj.weight)
nn.init.zeros_(self.down_proj.bias)
nn.init.zeros_(self.up_proj.bias)
instance_decoder_layer = TransformerDecoderLayer(self.down_size, 2, self.down_size*2,
self.dropout, 'relu', False)
instance_decoder_norm = nn.LayerNorm(d_model)
self.mhsa_layers = _get_clones(instance_decoder_layer, adapter_num_layers)
self.mhsa = TransformerDecoderLayer(self.down_size, 2, self.down_size*2,
self.dropout, 'relu', False)
def forward(self, x, prior=None):
down = self.down_proj(x)
down = self.non_linear_func(down) ## 197 x batchsize x 64
if prior is not None:
context, mask = prior
context = context.transpose(0,1) ## 18(#instance) x batchsize x 64
for z, layer in enumerate(self.mhsa_layers):
down = layer(down, context, tgt_mask=None,
memory_mask=None,
tgt_key_padding_mask=None,
memory_key_padding_mask=mask,
pos=None, query_pos=None)
else:
down = self.mhsa.forward_post(down, down, tgt_mask=None,
memory_mask=None,
tgt_key_padding_mask=None,
memory_key_padding_mask=None,
pos=None, query_pos=None)
up = self.up_proj(down)
output = up * self.scale
return output
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1):
super().__init__()
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.relu2 = nn.ReLU(inplace=True)
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu3 = nn.ReLU(inplace=True)
self.downsample = None
self.stride = stride
if stride > 1 or inplanes != planes * Bottleneck.expansion:
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
self.downsample = nn.Sequential(OrderedDict([
("-1", nn.AvgPool2d(stride)),
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
("1", nn.BatchNorm2d(planes * self.expansion))
]))
def forward(self, x: torch.Tensor):
identity = x
out = self.relu1(self.bn1(self.conv1(x)))
out = self.relu2(self.bn2(self.conv2(out)))
out = self.avgpool(out)
out = self.bn3(self.conv3(out))
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu3(out)
return out
class AttentionPool2d(nn.Module):
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
super().__init__()
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
self.k_proj = nn.Linear(embed_dim, embed_dim)
self.q_proj = nn.Linear(embed_dim, embed_dim)
self.v_proj = nn.Linear(embed_dim, embed_dim)
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
self.num_heads = num_heads
self.embed_dim = embed_dim
self.spacial_dim = spacial_dim
def forward(self, x):
B, C, H, W = x.shape
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
x_old = x
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
# add sptial position to B,C,H,W
cls_pos = self.positional_embedding[0:1, :]
# spatial_pos = F.interpolate(self.positional_embedding[1:,].reshape(1, self.spacial_dim, self.spacial_dim, self.embed_dim).permute(0, 3, 1, 2), size=(H, W), mode='bilinear')
spatial_pos = self.positional_embedding[1:].reshape(self.spacial_dim, self.spacial_dim, self.embed_dim)[:H, :W]
spatial_pos_old = spatial_pos
spatial_pos = spatial_pos.reshape(-1, self.embed_dim)
# spatial_pos = spatial_pos.reshape(self.embed_dim, H*W).permute(1, 0)
positional_embedding = torch.cat([cls_pos, spatial_pos], dim=0)
try:
x = x + positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
except:
print(spatial_pos_old.shape,x_old.shape, H, W, B)
pdb.set_trace()
x, _ = F.multi_head_attention_forward(
query=x, key=x, value=x,
embed_dim_to_check=x.shape[-1],
num_heads=self.num_heads,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
in_proj_weight=None,
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
bias_k=None,
bias_v=None,
add_zero_attn=False,
dropout_p=0,
out_proj_weight=self.c_proj.weight,
out_proj_bias=self.c_proj.bias,
use_separate_proj_weight=True,
training=self.training,
need_weights=False
)
x = x.permute(1, 2, 0)
# pdb.set_trace()
global_feat = x[:, :, 0]
feature_map = x[:, :, 1:].reshape(B, -1, H, W)
return global_feat, feature_map
# return x[0]
class ModifiedResNet(nn.Module):
"""
A ResNet class that is similar to torchvision's but contains the following changes:
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
- The final pooling layer is a QKV attention instead of an average pool
"""
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
super().__init__()
self.output_dim = output_dim
self.input_resolution = input_resolution
# the 3-layer stem
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(width // 2)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(width // 2)
self.relu2 = nn.ReLU(inplace=True)
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(width)
self.relu3 = nn.ReLU(inplace=True)
self.avgpool = nn.AvgPool2d(2)
# residual layers
self._inplanes = width # this is a *mutable* variable used during construction
self.layer1 = self._make_layer(width, layers[0])
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
# pdb.set_trace()
embed_dim = width * 32 # the ResNet feature dimension
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
def init_weights(self, pretrained=None):
# pdb.set_trace()
pretrained = pretrained or self.pretrained
if isinstance(pretrained, str):
checkpoint = torch.jit.load(pretrained, map_location='cpu').float().state_dict()
state_dict = {}
for k in checkpoint.keys():
if k.startswith('visual.'):
new_k = k.replace('visual.', '')
state_dict[new_k] = checkpoint[k]
if 'positional_embedding' in new_k:
if self.attnpool.positional_embedding.shape != state_dict[new_k].shape:
# pdb.set_trace()
print(f'Resize the pos_embed shape from {state_dict[new_k].shape} to {self.attnpool.positional_embedding.shape}')
cls_pos = state_dict[new_k][0:1, :]
H = W = self.input_resolution // 32
spatial_pos = F.interpolate(state_dict[new_k][1:,].reshape(1, 7, 7, cls_pos.shape[1]).permute(0, 3, 1, 2), size=(H, W), mode='bilinear')
spatial_pos = spatial_pos.reshape(cls_pos.shape[1], H*W).permute(1, 0)
positional_embedding = torch.cat([cls_pos, spatial_pos], dim=0)
state_dict[new_k] = positional_embedding
assert self.attnpool.positional_embedding.shape == state_dict[new_k].shape
u, w = self.load_state_dict(state_dict, False)
print(u, w, 'are misaligned params in CLIPResNet')
def _make_layer(self, planes, blocks, stride=1):
layers = [Bottleneck(self._inplanes, planes, stride)]
self._inplanes = planes * Bottleneck.expansion
for _ in range(1, blocks):
layers.append(Bottleneck(self._inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
# pdb.set_trace()
x_old = x
def stem(x):
x = self.relu1(self.bn1(self.conv1(x)))
x = self.relu2(self.bn2(self.conv2(x)))
x = self.relu3(self.bn3(self.conv3(x)))
x = self.avgpool(x)
return x
# pdb.set_trace()
x = x.type(self.conv1.weight.dtype)
x = stem(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
# x = self.attnpool(x)
try:
x_global, x_local = self.attnpool(x)
except:
print(x_old.shape)
return x_global, x_local
# return x
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
ret = super().forward(x.type(torch.float32))
return ret.type(orig_type)
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None, adapter: bool=False, adapter_num_layers: int=1):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model))
]))
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
if adapter:
self.adaptermlp = Adapter(None, d_model=d_model , dropout=0.1, bottleneck=64,
init_option='lora',
adapter_scalar='learnable_scalar',
adapter_num_layers=adapter_num_layers,
)
self.adapter = adapter
def attention(self, x: torch.Tensor):
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
def forward(self, x: torch.Tensor):
'''
x: L * bs * C,
prior[0]: bs * L' * C', padded prior knowledge
prior[1]: bs * L' (mask of prior knowledge)
'''
x, prior = x
if self.adapter:
adapt_x = self.adaptermlp(x, prior=prior)
x = x + adapt_x
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return (x,prior)
class Transformer(nn.Module):
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None, adapter: bool=False, adapter_layers: List=[i for i in range(24)], adapter_num_layers: int=1):
super().__init__()
self.width = width
self.layers = layers
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask, adapter=((_ in adapter_layers) and adapter), adapter_num_layers=adapter_num_layers) for _ in range(layers)])
def forward(self, x: torch.Tensor, prior=None):
return self.resblocks((x,prior))[0]
class VisionTransformer(nn.Module):
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int, use_adapter: bool=True, adapter_layers: List=[_ for _ in range(24)], adapter_num_layers: int=1):
super().__init__()
self.input_resolution = input_resolution
self.output_dim = output_dim
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
scale = width ** -0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
self.ln_pre = LayerNorm(width)
self.transformer = Transformer(width, layers, heads, adapter=use_adapter, adapter_layers=adapter_layers, adapter_num_layers=adapter_num_layers)
self.ln_post = LayerNorm(width)
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
self.patch_size = patch_size
def forward(self, x: torch.Tensor, prior=None):
bs, c, h, w = x.shape
x = self.conv1(x) # shape = [*, width, grid, grid]
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
x = x + self.positional_embedding.to(x.dtype)
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x,prior)
x = x.permute(1, 0, 2) # LND -> NLD
# x = self.ln_post(x[:, 0, :])
x = self.ln_post(x)
if self.proj is not None:
x = x @ self.proj
return x[:,0,:], x[:,1:,:].view(bs,h//self.patch_size, w//self.patch_size, -1).permute(0, 3, 1, 2)
def init_weights(self, pretrained=None):
pretrained = pretrained or self.pretrained
if isinstance(pretrained, str):
checkpoint = torch.jit.load(pretrained, map_location='cpu').float().state_dict()
state_dict = {}
for k in checkpoint.keys():
if not k.startswith('visual') and not k.startswith('transf'):
print(k)
for k in checkpoint.keys():
if k.startswith('visual.'):
new_k = k.replace('visual.', '')
state_dict[new_k] = checkpoint[k]
if 'positional_embedding' in new_k:
if self.positional_embedding.shape != state_dict[new_k].shape:
pdb.set_trace()
print(f'Resize the pos_embed shape from {state_dict[new_k].shape} to {self.positional_embedding.shape}')
cls_pos = state_dict[new_k][0:1, :]
H = W = self.input_resolution // 16
spatial_pos = F.interpolate(state_dict[new_k][1:,].reshape(1, 14, 14, cls_pos.shape[1]).permute(0, 3, 1, 2), size=(H, W), mode='bilinear')
# H = W = self.input_resolution // 32
# spatial_pos = F.interpolate(state_dict[new_k][1:,].reshape(1, 7, 7, cls_pos.shape[1]).permute(0, 3, 1, 2), size=(H, W), mode='bilinear')
spatial_pos = spatial_pos.reshape(cls_pos.shape[1], H*W).permute(1, 0)
positional_embedding = torch.cat([cls_pos, spatial_pos], dim=0)
state_dict[new_k] = positional_embedding
print(self.positional_embedding.shape , state_dict[new_k].shape,self.input_resolution)
assert self.positional_embedding.shape == state_dict[new_k].shape
# pdb.set_trace()
u, w = self.load_state_dict(state_dict, False)
u = [k for k in u if not 'adaptermlp' in k and not 'extractor' in k]
print(u, w, 'are misaligned params in CLIPResNet')
class CLIPTextContextEncoder(nn.Module):
def __init__(self, context_length=13,
vocab_size=49408,
transformer_width=512,
transformer_heads=8,
transformer_layers=12,
embed_dim=1024,
out_dim=256,
pretrained=None, **kwargs):
super().__init__()
self.pretrained = pretrained
self.context_length = context_length
self.transformer = Transformer(
width=transformer_width,
layers=transformer_layers,
heads=transformer_heads,
attn_mask=self.build_attention_mask()
)
self.embed_dim = embed_dim
self.vocab_size = vocab_size
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
self.ln_final = LayerNorm(transformer_width)
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
def init_weights(self, pretrained=None):
pretrained = pretrained or self.pretrained
if isinstance(pretrained, str):
checkpoint = torch.jit.load(pretrained, map_location='cpu').float().state_dict()
state_dict = {}
for k in checkpoint.keys():
if k.startswith('transformer.'):
state_dict[k] = checkpoint[k]
if k == 'positional_embedding' or k == 'text_projection' or k.startswith('token_embedding') or k.startswith('ln_final'):
if k == 'positional_embedding' and checkpoint[k].size(0) > self.context_length:
checkpoint[k] = checkpoint[k][:self.context_length]
print('positional_embedding is tuncated from 77 to', self.context_length)
state_dict[k] = checkpoint[k]
u, w = self.load_state_dict(state_dict, False)
print(u, w, 'are misaligned params in text encoder')
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
def forward_context(self, text, context):
pdb.set_trace()
x_text = self.token_embedding(text) # n_clas, n_text, C
K, N1, C = x_text.shape
B, N2, C = context.shape
eos_indx = text.argmax(dim=-1) + N2
eos_indx = eos_indx.reshape(1, K).expand(B, K).reshape(-1)
x_text = x_text.reshape(1, K, N1, C).expand(B, K, N1, C)
context = context.reshape(B, 1, N2, C).expand(B, K, N2, C)
x = torch.cat([x_text[:,:,0:1], context, x_text[:, :, 1:]], dim=2).reshape(B*K, N1+N2, C)
x = x + self.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x)
x = x[torch.arange(x.shape[0]), eos_indx] @ self.text_projection
x = x.reshape(B, K, self.embed_dim)
return x
'''
def forward(self, text_verb, text_object, context):
# pdb.set_trace()
K, N1_v = text_verb.shape
K, N1_o = text_object.shape
B, N2, C = context.shape
texts = torch.cat([text_verb, text_object],dim=-1)
x_text = self.token_embedding(texts)
eos_indx = text_object.argmax(dim=-1) + N1_v + N2
x_text = x_text.reshape(1, K, N1_v+N1_o, C).expand(B, K, N1_v+N1_o, C)
context = context.reshape(B, 1, N2, C).expand(B, K, N2, C)
x = torch.cat([context[:,:,:4], x_text[:,:,0:N1_v], context[:,:,4:], x_text[:, :, N1_v:]], dim=2).reshape(B*K, N1_v+N1_o+N2, C)
x = x + self.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x)
x = x[torch.arange(x.shape[0]), eos_indx] @ self.text_projection
x = x.reshape(B, K, self.embed_dim)
return x
'''
def forward(self, text):
x = self.token_embedding(text) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x= self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x)
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
return x
def forward_prompts(self, prompts, tokenized_prompts):
x = prompts + self.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x)
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), tokenized_prompts.argmax(dim=-1)] @ self.text_projection
return x
class CLIP_ResNet(nn.Module):
def __init__(self,
embed_dim: int,
# vision
image_resolution: int,
vision_layers: Union[Tuple[int, int, int, int], int],
vision_width: int,
vision_patch_size: int,
# text
context_length: int,
transformer_width: int,
transformer_heads: int,
transformer_layers: int,
use_adapter=True
):
super().__init__()
self.context_length = context_length
if isinstance(vision_layers, (tuple, list)):
vision_heads = vision_width * 32 // 64
self.visual = ModifiedResNet(
layers=vision_layers,
output_dim=embed_dim,
heads=vision_heads,
input_resolution=image_resolution,
width=vision_width
)
else:
vision_heads = vision_width // 64
self.visual = VisionTransformer(
input_resolution=image_resolution,
patch_size=vision_patch_size,
width=vision_width,
layers=vision_layers,
heads=vision_heads,
output_dim=embed_dim,
use_adapter=use_adapter
)
self.text_encoder = CLIPTextContextEncoder(context_length=context_length,
vocab_size=49408,
transformer_width=transformer_width,
transformer_heads=transformer_heads,
transformer_layers=transformer_layers,
embed_dim=embed_dim)
self.initialize_parameters()
def initialize_parameters(self):
# nn.init.normal_(self.token_embedding.weight, std=0.02)
# nn.init.normal_(self.positional_embedding, std=0.01)
if isinstance(self.visual, ModifiedResNet):
if self.visual.attnpool is not None:
std = self.visual.attnpool.c_proj.in_features ** -0.5
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
for name, param in resnet_block.named_parameters():
if name.endswith("bn3.weight"):
nn.init.zeros_(param)
# proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
# attn_std = self.transformer.width ** -0.5
# fc_std = (2 * self.transformer.width) ** -0.5
# for block in self.transformer.resblocks:
# nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
# nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
# nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
# nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
# if self.text_projection is not None:
# nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
@property
def dtype(self):
return self.visual.conv1.weight.dtype
def encode_image(self, image):
x_global, x_local = self.visual(image.type(self.dtype))
return x_global.float(), x_local.float()
def encode_text(self, text, context):
return self.text_encoder(text, context)
def init_weights(self, pretrained=None):
self.visual.init_weights(pretrained=pretrained)
self.text_encoder.init_weights(pretrained=pretrained)
class CLIP(nn.Module):
def __init__(self,
embed_dim: int,
# vision
image_resolution: int,
vision_layers: Union[Tuple[int, int, int, int], int],
vision_width: int,
vision_patch_size: int,
# text
context_length: int,
vocab_size: int,
transformer_width: int,
transformer_heads: int,
transformer_layers: int,
use_adapter=True,
**kwargs,
):
super().__init__()
self.context_length = context_length
if isinstance(vision_layers, (tuple, list)):
vision_heads = vision_width * 32 // 64
self.visual = ModifiedResNet(
layers=vision_layers,
output_dim=embed_dim,
heads=vision_heads,
input_resolution=image_resolution,
width=vision_width
)
else:
vision_heads = vision_width // 64
self.visual = VisionTransformer(
input_resolution=image_resolution,
patch_size=vision_patch_size,
width=vision_width,
layers=vision_layers,
heads=vision_heads,
output_dim=embed_dim,
use_adapter=use_adapter,
adapter_layers=kwargs["adapter_layers"],
adapter_num_layers=kwargs["adapter_num_layers"],
)
self.transformer = Transformer(
width=transformer_width,
layers=transformer_layers,
heads=transformer_heads,
attn_mask=self.build_attention_mask()
)
self.vocab_size = vocab_size
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
self.ln_final = LayerNorm(transformer_width)
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.initialize_parameters()
def initialize_parameters(self):
nn.init.normal_(self.token_embedding.weight, std=0.02)
nn.init.normal_(self.positional_embedding, std=0.01)
if isinstance(self.visual, ModifiedResNet):
if self.visual.attnpool is not None:
std = self.visual.attnpool.c_proj.in_features ** -0.5
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
for name, param in resnet_block.named_parameters():
if name.endswith("bn3.weight"):
nn.init.zeros_(param)
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
attn_std = self.transformer.width ** -0.5
fc_std = (2 * self.transformer.width) ** -0.5
for block in self.transformer.resblocks:
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
if self.text_projection is not None:
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
@property
def dtype(self):
return self.visual.conv1.weight.dtype
def encode_image(self, image):
return self.visual(image.type(self.dtype))
def encode_text(self, text):
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding.type(self.dtype)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x).type(self.dtype)
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
return x
def forward(self, image, text):
image_features = self.encode_image(image)
text_features = self.encode_text(text)
# normalized features
image_features = image_features / image_features.norm(dim=1, keepdim=True)
text_features = text_features / text_features.norm(dim=1, keepdim=True)
# cosine similarity as logits
logit_scale = self.logit_scale.exp()
logits_per_image = logit_scale * image_features @ text_features.t()
logits_per_text = logits_per_image.t()
# shape = [global_batch_size, global_batch_size]
return logits_per_image, logits_per_text
def convert_weights(model: nn.Module):
"""Convert applicable model parameters to fp16"""
def _convert_weights_to_fp16(l):
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
l.weight.data = l.weight.data.half()
if l.bias is not None:
l.bias.data = l.bias.data.half()
if isinstance(l, nn.MultiheadAttention):
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
tensor = getattr(l, attr)
if tensor is not None:
tensor.data = tensor.data.half()
for name in ["text_projection", "proj"]:
if hasattr(l, name):
attr = getattr(l, name)
if attr is not None:
attr.data = attr.data.half()
model.apply(_convert_weights_to_fp16)
def build_model(state_dict: dict, use_adapter=True, adapter_pos='all', adapter_num_layers=1):
vit = "visual.proj" in state_dict
if vit:
vision_width = state_dict["visual.conv1.weight"].shape[0]
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
image_resolution = vision_patch_size * grid_size
else:
counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
vision_layers = tuple(counts)
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
vision_patch_size = None
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
image_resolution = output_width * 32
embed_dim = state_dict["text_projection"].shape[1]
context_length = state_dict["positional_embedding"].shape[0]
vocab_size = state_dict["token_embedding.weight"].shape[0]
transformer_width = state_dict["ln_final.weight"].shape[0]
transformer_heads = transformer_width // 64
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
if adapter_pos == 'all':
adapter_layers = [z for z in range(vision_layers)]
elif adapter_pos == 'front':
adapter_layers = [z for z in range(vision_layers // 2)]
elif adapter_pos == 'end':
adapter_layers = [z for z in range(vision_layers//2, vision_layers)]
elif adapter_pos == 'last':
adapter_layers = [z for z in range(vision_layers-1, vision_layers)]
elif adapter_pos == 'random':
adapter_layers = [random.randint(0, vision_layers-1) for z in range(vision_layers//2)]
model = CLIP(
embed_dim,
image_resolution, vision_layers, vision_width, vision_patch_size,
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers, use_adapter=use_adapter,
adapter_layers=adapter_layers, adapter_num_layers=adapter_num_layers
)
for key in ["input_resolution", "context_length", "vocab_size"]:
if key in state_dict:
del state_dict[key]
# convert_weights(model)
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
print('[INFO] missing_keys:', [ k for k in missing_keys if 'adaptermlp' not in k])
print('[INFO] unexpected_keys:', unexpected_keys)
return model
_tokenizer = _Tokenizer()
def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False, return_sot=True) -> Union[torch.IntTensor, torch.LongTensor]:
"""
Returns the tokenized representation of given input string(s)
Parameters
----------
texts : Union[str, List[str]]
An input string or a list of input strings to tokenize
context_length : int
The context length to use; all CLIP models use 77 as the context length
truncate: bool