-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload.py
216 lines (185 loc) · 6.74 KB
/
load.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import numpy
from pycocotools.coco import COCO
import pandas as pd
from tqdm import tqdm
import glob
import cv2
import numpy as np
from iunet import model
from matplotlib import pyplot as plt
size_x = 512
size_y = 512
num_classes = 42
...
train_annot_path = 'hand_labels/annotations/panoptic_train.json'
val_annot_path = 'hand_labels/annotations/panoptic_test.json'
train_coco = COCO(train_annot_path) # load annotations for training set
val_coco = COCO(val_annot_path) # load annotations for validation set
...
# function iterates ofver all ocurrences of a person and returns relevant data row by row
def get_meta(coco):
ids = list(coco.imgs.keys())
for i, img_id in enumerate(ids):
img_meta = coco.imgs[img_id]
ann_ids = coco.getAnnIds(imgIds=img_id)
# basic parameters of an image
img_file_name = img_meta['file_name']
w = img_meta['width']
h = img_meta['height']
# retrieve metadata for all persons in the current image
anns = coco.loadAnns(ann_ids)
yield [img_id, img_file_name, w, h, anns]
...
# iterate over images
for img_id, img_fname, w, h, meta in get_meta(train_coco):
...
# iterate over all annotations of an image
for m in meta:
# m is a dictionary
keypoints = m['keypoints']
######################################
def convert_to_df(coco):
images_data = []
persons_data = []
# iterate over all images
for img_id, img_fname, w, h, meta in get_meta(coco):
images_data.append({
'image_id': int(img_id),
'path': img_fname,
'width': int(w),
'height': int(h)
})
# iterate over all metadata
for m in meta:
persons_data.append({
'image_id': m['image_id'],
'is_crowd': m['iscrowd'],
'bbox': m['bbox'],
'area': m['area'],
'keypoints': m['keypoints'],
})
# create dataframe with image paths
images_df = pd.DataFrame(images_data)
images_df.set_index('image_id', inplace=True)
# create dataframe with persons
persons_df = pd.DataFrame(persons_data)
persons_df.set_index('image_id', inplace=True)
return images_df, persons_df
##################################3
"""
images_df, persons_df = convert_to_df(train_coco)
train_coco_df = pd.merge(images_df, persons_df, right_index=True, left_index=True)
train_coco_df['source'] = 0
print(train_coco_df.head())
print(len(images_df), len(persons_df))
print(images_df.shape, persons_df.shape)
print(len(train_coco_df))
print(train_coco_df.shape)
train_target = train_coco_df.pop('keypoints')
print(len(train_target), train_target)
"""
images_df, persons_df = convert_to_df(val_coco)
val_coco_df = pd.merge(images_df, persons_df, right_index=True, left_index=True)
val_coco_df['source'] = 0
print(val_coco_df.head())
print(len(images_df), len(persons_df))
print(images_df.shape, persons_df.shape)
print(len(val_coco_df))
print(val_coco_df.shape)
#val_target = val_coco_df.pop('keypoints')
numeric_feature_names = ['keypoints']
val_target = val_coco_df[numeric_feature_names]
val_target.head()
print(len(val_target), val_target)
val_target2=val_target.to_numpy()
#val_target3=numpy.array(val_target2)
val_target3 = np.array(val_coco_df['keypoints'].tolist())
val_target3 = numpy.delete(val_target3, numpy.s_[2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62], axis=1)
val_target4 = val_target3 / size_x
#val_target3 = np.reshape(val_target2, (-1, 2))
#val_target4=np.array(val_target.values.tolist())#846x63
def drawKeyPts(im,keyp,keyp2,col,th):
#for i in keyp:
#for j in keyp2:
for i, j in zip(keyp, keyp2):
x = int(i)
y = int(j)
size = 3
cv2.circle(im,(x,y),size, col,thickness=th)#, lineType=-1)#, shift=0)
plt.imshow(im)
return im
size_x = 512
size_y = 512
num_classes = 42
#training list
val_images = []
for img_path in tqdm(sorted(glob.glob("hand_labels/manual_test/*.jpg")),total=846):
img = cv2.imread(img_path)
img = cv2.resize(img, (size_x, size_y))
val_images.append(img)
"convert list to np array for ml processing"
val_images = np.array(val_images)#dtype:uint8
test = []
img_path = "hand_labels/manual_test/000835470_01_r.jpg"
img = cv2.imread(img_path)
#img = cv2.resize(img, (size_x, size_y))
test.append(img)
test=np.array(test)
#visualize_keypoints(val_images[10], val_target4[10])
x1=val_target3[1][::2]
y1=val_target3[1][1::2]
x2=(512/1920)*x1
y2=(512/1080)*y1
result = drawKeyPts(val_images[1].copy(),x2,y2,(0,255,0),-1)
#result = drawKeyPts(test[0].copy(),x1,y1,(0,0,255),-1)
from keras.utils import normalize
#train_images = np.expand_dims(train_images, axis=3)#701x256x256 to 701x256x256x3
#####train_images = train_images.astype(np.float32)
val_images = normalize(val_images, axis=1)#uint8 to float64
print(val_images.shape)#1912x128x128x3
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(val_images, val_target3, test_size=0.3, random_state=42)
img_height = x_train.shape[1]
img_width = x_train.shape[2]
img_channels = x_train.shape[3]
input_shape = (img_height,img_width,img_channels)
print(input_shape)
#img_height = 256
#img_width = 256
#img_channels = 3
#num_classes = 38
def get_model():
return model(input=input_shape)
model = get_model()
#optimizer = tf.keras.optimizers.Adam(0.001)
model.compile(optimizer="adam", loss="mean_squared_error", metrics=["accuracy"])#default lr 0.001
#model.compile(optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"])
#model.summary()
history = model.fit(x_train, y_train, batch_size=32, verbose=1, epochs= 500, validation_data=(x_test, y_test), shuffle=False)#, class_weight=class_weights )
#history = model.fit(x_train, y_train_cat, batch_size=2, verbose=1, epochs= 10, validation_data=(x_test, y_test_cat), shuffle=False)#, class_weight=class_weights )
#shuffle true sshuffles only the training data for every epoch. but may be we need same for checking imporved models.
model.save("new.hdf5")
_, acc = model.evaluate(x_test, y_test)
print("Accuracy:", (acc*100.0),"%")
#plot train val acc loss
loss = history.history["loss"]
val_loss = history.history["val_loss"]
epochs = range(1, len(loss) + 1)
plt.plot(epochs, loss, "y", label="Training loss")
plt.plot(epochs, val_loss, "r", label="Validation loss")
plt.title("Training and Validation Loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.legend()
plt.savefig("loss.png")
plt.show()
acc = history.history["accuracy"]
val_acc = history.history["val_accuracy"]
plt.plot(epochs, acc, "y", label="Training Accuracy")
plt.plot(epochs, val_acc, "r", label="Validation Accuracy")
plt.title("Training and Validation Accuracy")
plt.xlabel("Epochs")
plt.ylabel("Accuracy")
plt.legend()
plt.savefig("accuracy.png")
plt.show()