-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathload_CSG_dataset.py
216 lines (171 loc) · 9.51 KB
/
load_CSG_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import os
import re
import torch
import sys
try:
from .common_subgraph import get_task, task_to_torch_geometric, save_torch_geometric, dict_to_torch_geometric, cumsum
except ImportError:
from common_subgraph import get_task, task_to_torch_geometric, save_torch_geometric, dict_to_torch_geometric, cumsum
import numpy as np
import os
from torch.utils.data import random_split, Subset, DataLoader, Dataset
from torch_geometric.data import Data, Batch
from torch.utils.data.dataloader import default_collate
import multiprocessing as mp
from tqdm import tqdm
import time
class CSGDataset(Dataset):
def __init__(self, root, dataset = "CommonSubgraph/data51_diverse_multi_1_10k", add_traspose_rels=False, shot = 1, n_query = 3, hop = 2, mode='train', generation = False, rule_type = "multi_line_1", preprocess=False, num_examples=100):
self.few = shot
self.nq = n_query
self.mode = mode
self.graph = None
self.num_nodes_bg = 1000 # fake
if self.mode == "train":
# self.num_rels = 10
self.num_rels = 10000
else:
self.num_rels = 50
self.curr_tri_idx = 0
self.raw_data_paths = os.path.join(root, dataset)
self.use_cache = True
self.num_rels_bg = 101
self.hop = hop
self.max_n_label = np.array([hop , hop ])
self.t_torch, self.t_others = 0, 0
self.num_examples = num_examples
# self.tasks = [get_task(index, prefix = self.mode, base_path = self.raw_data_paths, use_cache = self.use_cache, hop = self.hop) for index in tqdm(range(self.num_rels))]
# ## pre-generation
if generation:
if mode == 'train':
print(int(sys.argv[1]),int(sys.argv[2]))
for index in tqdm(range(int(sys.argv[1]),int(sys.argv[2]))):
get_task(index, self.mode, base_path = self.raw_data_paths, hop = hop, rule_type = rule_type, use_cache = False)
else:
for index in tqdm(range(self.num_rels)):
get_task(index, self.mode, base_path = self.raw_data_paths, hop = hop, rule_type = rule_type, use_cache = False)
save_path = os.path.join(root, f"{dataset}_preprocessed")
if preprocess:
self._preprocess(save_path)
else:
self.pos_dict = torch.load(os.path.join(save_path, "pos-%s.pt" % self.mode))
self.neg_dict = torch.load(os.path.join(save_path, "neg-%s.pt" % self.mode))
def __len__(self):
return self.num_rels
def _preprocess(self, save_path):
print("start preprocessing %s" % self.mode)
all_pos_edge_index, all_pos_x, all_pos_edge_attr, all_pos_edge_mask, all_pos_x_pos, all_pos_n_size, all_pos_e_size = [], [], [], [], [], [], []
all_neg_edge_index, all_neg_x, all_neg_edge_attr, all_neg_edge_mask, all_neg_x_pos, all_neg_n_size, all_neg_e_size = [], [], [], [], [], [], []
for index in tqdm(range(self.num_rels)):
pos_edge_index, pos_x, pos_edge_attr, pos_edge_mask, pos_x_pos, pos_n_size, pos_e_size, neg_edge_index, neg_x, neg_edge_attr, neg_edge_mask, neg_x_pos, neg_n_size, neg_e_size = save_torch_geometric(*get_task(index, prefix = self.mode, base_path = self.raw_data_paths, use_cache = self.use_cache, hop = self.hop))
all_pos_edge_index.append(pos_edge_index)
all_pos_x.append(pos_x)
all_pos_edge_attr.append(pos_edge_attr)
all_pos_edge_mask.append(pos_edge_mask)
all_pos_x_pos.append(pos_x_pos)
all_pos_n_size.append(pos_n_size)
all_pos_e_size.append(pos_e_size)
all_neg_edge_index.append(neg_edge_index)
all_neg_x.append(neg_x)
all_neg_edge_attr.append(neg_edge_attr)
all_neg_edge_mask.append(neg_edge_mask)
all_neg_x_pos.append(neg_x_pos)
all_neg_n_size.append(neg_n_size)
all_neg_e_size.append(neg_e_size)
print("concat all")
all_pos_edge_index = torch.cat(all_pos_edge_index, 1)
all_pos_x = torch.cat(all_pos_x, 0)
all_pos_edge_attr = torch.cat(all_pos_edge_attr, 0)
all_pos_edge_mask = torch.cat(all_pos_edge_mask, 0)
all_pos_x_pos = torch.cat(all_pos_x_pos, 0)
all_neg_edge_index = torch.cat(all_neg_edge_index, 1)
all_neg_x = torch.cat(all_neg_x, 0)
all_neg_edge_attr = torch.cat(all_neg_edge_attr, 0)
all_neg_edge_mask = torch.cat(all_neg_edge_mask, 0)
all_neg_x_pos = torch.cat(all_neg_x_pos, 0)
all_pos_n_size = torch.tensor(all_pos_n_size)
all_pos_e_size = torch.tensor(all_pos_e_size)
all_neg_n_size = torch.tensor(all_neg_n_size)
all_neg_e_size = torch.tensor(all_neg_e_size)
all_pos_n_size = cumsum(all_pos_n_size)
all_pos_e_size = cumsum(all_pos_e_size)
all_neg_n_size = cumsum(all_neg_n_size)
all_neg_e_size = cumsum(all_neg_e_size)
pos_save_dict = {
'edge_index': all_pos_edge_index,
'x': all_pos_x,
'edge_attr': all_pos_edge_attr,
'edge_mask': all_pos_edge_mask,
'x_pos': all_pos_x_pos,
'n_size': all_pos_n_size,
'e_size': all_pos_e_size
}
neg_save_dict = {
'edge_index': all_neg_edge_index,
'x': all_neg_x,
'edge_attr': all_neg_edge_attr,
'edge_mask': all_neg_edge_mask,
'x_pos': all_neg_x_pos,
'n_size': all_neg_n_size,
'e_size': all_neg_e_size
}
print("saving")
torch.save(pos_save_dict, os.path.join(save_path, "pos-%s.pt" % self.mode))
torch.save(neg_save_dict, os.path.join(save_path, "neg-%s.pt" % self.mode))
self.pos_dict = pos_save_dict
self.neg_dict = neg_save_dict
def __getitem__(self, index):
t1 = time.time()
pos_graphs = dict_to_torch_geometric(index, self.pos_dict)
neg_graphs = dict_to_torch_geometric(index, self.neg_dict)
t2 = time.time()
n = len(pos_graphs)
# curr_tasks_idx = list(range(0, self.few+self.nq))
curr_tasks_idx = np.random.choice(range(n), self.few+self.nq)
support_triples = curr_tasks_idx[:self.few]
query_triples = curr_tasks_idx[self.few:]
support_subgraphs = [pos_graphs[i] for i in curr_tasks_idx[:self.few]]
query_subgraphs = [pos_graphs[i] for i in curr_tasks_idx[self.few:]]
# import pdb;pdb.set_trace()
# curr_tasks_idx = list(range(0, self.few+self.nq))
curr_tasks_idx = np.random.choice(range(n), self.few+self.nq)
support_negative_triples = curr_tasks_idx[:self.few]
negative_triples = curr_tasks_idx[self.few:]
support_negative_subgraphs = [neg_graphs[i] for i in curr_tasks_idx[:self.few]]
negative_subgraphs = [neg_graphs[i] for i in curr_tasks_idx[self.few:]]
curr_rel = index
t3 = time.time()
self.t_torch += t2 - t1
self.t_others += t3 - t2
return support_triples, support_subgraphs, support_negative_triples, support_negative_subgraphs, query_triples, query_subgraphs, negative_triples, negative_subgraphs, curr_rel
def next_one_on_eval(self):
assert False
if self.curr_tri_idx == self.num_rels:
return "EOT", "EOT"
self.curr_tri_idx += 1
index, pos_graphs, neg_graphs = task_to_torch_geometric(*get_task(self.curr_tri_idx, prefix = self.mode, base_path = self.raw_data_paths, use_cache = self.use_cache, num_neg = 1000,hop = self.hop))
n = len(pos_graphs)
curr_tasks_idx = np.random.choice(range(n), self.few+1)
support_triples = curr_tasks_idx[:self.few]
query_triples = curr_tasks_idx[self.few:]
support_subgraphs = [pos_graphs[i] for i in curr_tasks_idx[:self.few]]
query_subgraphs = [pos_graphs[i] for i in curr_tasks_idx[self.few:]]
n = len(neg_graphs)
curr_tasks_idx = np.random.choice(range(n), n)
support_negative_triples = curr_tasks_idx[:self.few]
negative_triples = curr_tasks_idx[self.few:]
support_negative_subgraphs = [neg_graphs[i] for i in curr_tasks_idx[:self.few]]
negative_subgraphs = [neg_graphs[i] for i in curr_tasks_idx[self.few:]]
curr_rel = index
support_triples = [support_triples]
support_negative_triples = [support_negative_triples]
query_triples = [query_triples]
negative_triples = [negative_triples]
support_subgraphs = Batch.from_data_list(support_subgraphs)
support_negative_subgraphs = Batch.from_data_list(support_negative_subgraphs)
query_subgraphs = Batch.from_data_list(query_subgraphs)
return [support_triples, support_subgraphs, support_negative_triples, support_negative_subgraphs, query_triples, query_subgraphs, negative_triples, negative_subgraphs], [curr_rel]
if __name__ == "__main__":
dataset = CSGDataset(".", dataset = "data51_diverse_multi_1_10k", mode = "test", preprocess = True, rule_type = "multi_line_1")
# dataset = CSGDataset(".", dataset = "data51_diverse_multi_1_10k", mode = "dev", preprocess = True, rule_type = "multi_line_1")
dataset = CSGDataset(".", dataset = "data51_diverse_multi_1_10k", mode = "train", preprocess = True, rule_type = "multi_line_1")