This repository has been archived by the owner on Jun 20, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathnormalizer.py
147 lines (121 loc) · 5.82 KB
/
normalizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import re
import torch
from string import printable, punctuation
from tqdm import tqdm
import warnings
class Normalizer:
def __init__(self,
device='cpu',
jit_model='jit_s2s.pt'):
super(Normalizer, self).__init__()
self.device = torch.device(device)
self.init_vocabs()
self.model = torch.jit.load(jit_model, map_location=device)
self.model.eval()
self.max_len = 150
def init_vocabs(self):
# Initializes source and target vocabularies
# vocabs
rus_letters = 'абвгдеёжзийклмнопрстуфхцчшщъыьэюяАБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ'
spec_symbols = '¼³№¾⅞½⅔⅓⅛⅜²'
# numbers + eng + punctuation + space + rus
self.src_vocab = {token: i + 5 for i, token in enumerate(printable[:-5] + rus_letters + '«»—' + spec_symbols)}
# punctuation + space + rus
self.tgt_vocab = {token: i + 5 for i, token in enumerate(punctuation + rus_letters + ' ' + '«»—')}
unk = '#UNK#'
pad = '#PAD#'
sos = '#SOS#'
eos = '#EOS#'
tfo = '#TFO#'
for i, token in enumerate([unk, pad, sos, eos, tfo]):
self.src_vocab[token] = i
self.tgt_vocab[token] = i
for i, token_name in enumerate(['unk', 'pad', 'sos', 'eos', 'tfo']):
setattr(self, '{}_index'.format(token_name), i)
inv_src_vocab = {v: k for k, v in self.src_vocab.items()}
self.src2tgt = {src_i: self.tgt_vocab.get(src_symb, -1) for src_i, src_symb in inv_src_vocab.items()}
def keep_unknown(self, string):
reg = re.compile(r'[^{}]+'.format(''.join(self.src_vocab.keys())))
unk_list = re.findall(reg, string)
unk_ids = [range(m.start() + 1, m.end()) for m in re.finditer(reg, string) if m.end() - m.start() > 1]
flat_unk_ids = [i for sublist in unk_ids for i in sublist]
upd_string = ''.join([s for i, s in enumerate(string) if i not in flat_unk_ids])
return upd_string, unk_list
def _norm_string(self, string):
# Normalizes chunk
if len(string) == 0:
return string
string, unk_list = self.keep_unknown(string)
token_src_list = [self.src_vocab.get(s, self.unk_index) for s in list(string)]
src = token_src_list + [self.eos_index] + [self.pad_index]
src2tgt = [self.src2tgt[s] for s in src]
src2tgt = torch.LongTensor(src2tgt).to(self.device)
src = torch.LongTensor(src).unsqueeze(0).to(self.device)
with torch.no_grad():
out = self.model(src, src2tgt)
pred_words = self.decode_words(out, unk_list)
if len(pred_words) > 199:
warnings.warn("Sentence {} is too long".format(string), Warning)
return pred_words
def norm_text(self, text):
# Normalizes text
# Splits sentences to small chunks with weighted length <= max_len:
# * weighted length - estimated length of normalized sentence
#
# 1. Full text is splitted by "ending" symbols (\n\t?!.) to sentences;
# 2. Long sentences additionally splitted to chunks: by spaces or just dividing too long words
splitters = '\n\t?!'
parts = [p for p in re.split(r'({})'.format('|\\'.join(splitters)), text) if p != '']
norm_parts = []
for part in tqdm(parts):
if part in splitters:
norm_parts.append(part)
else:
weighted_string = [7 if symb.isdigit() else 1 for symb in part]
if sum(weighted_string) <= self.max_len:
norm_parts.append(self._norm_string(part))
else:
spaces = [m.start() for m in re.finditer(' ', part)]
start_point = 0
end_point = 0
curr_point = 0
while start_point < len(part):
if curr_point in spaces:
if sum(weighted_string[start_point:curr_point]) < self.max_len:
end_point = curr_point + 1
else:
norm_parts.append(self._norm_string(part[start_point:end_point]))
start_point = end_point
elif sum(weighted_string[end_point:curr_point]) >= self.max_len:
if end_point > start_point:
norm_parts.append(self._norm_string(part[start_point:end_point]))
start_point = end_point
end_point = curr_point - 1
norm_parts.append(self._norm_string(part[start_point:end_point]))
start_point = end_point
elif curr_point == len(part):
norm_parts.append(self._norm_string(part[start_point:]))
start_point = len(part)
curr_point += 1
return ''.join(norm_parts)
def decode_words(self, pred, unk_list=None):
if unk_list is None:
unk_list = []
pred = pred.cpu().numpy()
pred_words = "".join(self.lookup_words(x=pred,
vocab={i: w for w, i in self.tgt_vocab.items()},
unk_list=unk_list))
return pred_words
def lookup_words(self, x, vocab, unk_list=None):
if unk_list is None:
unk_list = []
result = []
for i in x:
if i == self.unk_index:
if len(unk_list) > 0:
result.append(unk_list.pop(0))
else:
continue
else:
result.append(vocab[i])
return [str(t) for t in result]