This repository was archived by the owner on Nov 19, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhuffman.js
491 lines (391 loc) · 17.4 KB
/
huffman.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
// --- Simplified Module library from Emscripten -----------------------------
var Module;
if (!Module) {
Module = {};
// The environment setup code below is customized to use Module.
var ENVIRONMENT_IS_NODE = typeof process === 'object'
&& typeof require === 'function';
var ENVIRONMENT_IS_WEB = typeof window === 'object';
var ENVIRONMENT_IS_WORKER = typeof importScripts === 'function';
var ENVIRONMENT_IS_SHELL = !ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_NODE
&& !ENVIRONMENT_IS_WORKER;
if (ENVIRONMENT_IS_NODE) {
// Expose functionality in the same simple way that the shells work
// Note that we pollute the global namespace here, otherwise we break
// in node
if (!Module['print'])
Module['print'] = function print(x) {
process['stdout'].write(x + '\n');
};
if (!Module['printErr'])
Module['printErr'] = function printErr(x) {
process['stderr'].write(x + '\n');
};
} else if (ENVIRONMENT_IS_SHELL) {
if (!Module['print'])
Module['print'] = print;
if (typeof printErr != 'undefined')
Module['printErr'] = printErr; // not present in v8 or older sm
} else if (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) {
if (typeof console !== 'undefined') {
if (!Module['print'])
Module['print'] = function print(x) {
console.log(x);
};
if (!Module['printErr'])
Module['printErr'] = function printErr(x) {
console.log(x);
};
}
}
}
var TOTAL_MEMORY = Module['TOTAL_MEMORY'] || 16777216;
var HEAP = new ArrayBuffer(TOTAL_MEMORY);
var STDLIB = {
"Math": Math,
"Int32Array": Int32Array,
"Uint8Array": Uint8Array,
"Uint32Array": Uint32Array
};
var FOREIGN = {
"print": Module['print']
}
// --- Huffman compressing library --------------------------------------------
var Huffman = (function(stdlib, foreign, heap) {
"use asm";
// --- Standard library aliases -------------------------------------------
// Create an alias for Math.sin because asm.js does not allow method lookup
// inside functions. The following asmjs error is generated when you do a
// method lookup inside a function:
//
// warning: asm.js type error: unexpected callee expression type
//
// You can fix this error by creating an alias in the `preamble' of the
// asmjs module.
var sin = stdlib.Math.sin;
var print = foreign.print;
// --- Heaps --------------------------------------------------------------
var HEAPU8 = new stdlib.Uint8Array(heap);
var HEAPI32 = new stdlib.Int32Array(heap);
var HEAPU32 = new stdlib.Uint32Array(heap);
// --- Constants ----------------------------------------------------------
var FREQ_TABLE_LENGTH = 256; // size: 256 x 4 bytes
var HUFF_NODES_LENGTH = 0; // size: 512 x 16 bytes
// --- Heap memory offsets ------------------------------------------------
var FREQ_TABLE_OFFSET = 0;
var HUFF_NODES_OFFSET = 1024; // ^ + 4 * FREQ_TABLE_LENGTH
var INPUT_DATA_OFFSET = 9216; // ^ + 256 * 256 (= all symbol lists)
var INPUT_DATA_LENGTH = 0; // size: depends on input data
// --- Methods ------------------------------------------------------------
function _generateLookup(lookup, node, value) {
lookup = lookup | 0;
node = node | 0;
value = value | 0;
var msb = 0;
var tmp = 0;
if (HEAPI32[(node + 8 | 0) >> 2] | 0) {
value = value << 1;
_generateLookup(lookup, HEAPI32[(node + 8) >> 2] | 0, value);
_generateLookup(lookup, HEAPI32[(node + 12) >> 2] | 0, value | 1);
} else {
HEAPI32[(lookup + (HEAPI32[node >> 2] << 2 | 0) | 0) >> 2] = value;
}
}
function _buildLookup(data, dataLength) {
data = data | 0;
dataLength = dataLength | 0;
var j = 0;
var i = 0;
var i_end = 0;
var data_i = 0;
var node_i = 0;
var node_j = 0;
var tmp1 = 0;
var tmp2 = 0;
var tmp3 = 0;
var tmp4 = 0;
// Set the frequency table entries to zero.
i_end = FREQ_TABLE_OFFSET + (4 * FREQ_TABLE_LENGTH | 0) | 0;
for (i = FREQ_TABLE_OFFSET | 0; (i | 0) < (i_end | 0); i = i + 4 | 0)
HEAPI32[i >> 2] = 0;
// Count the character frequencies.
i_end = (data + dataLength) | 0;
for (i = data | 0; (i | 0) < (i_end | 0); i = i + 1 | 0) {
data_i = FREQ_TABLE_OFFSET + ((HEAPU8[i] << 2 | 0)) | 0;
HEAPI32[data_i >> 2] = (HEAPI32[data_i >> 2] | 0) + 1 | 0;
}
// Build the initial huffman tree nodes.
i_end = FREQ_TABLE_OFFSET + (4 * FREQ_TABLE_LENGTH | 0) | 0;
node_i = HUFF_NODES_OFFSET;
j = 0;
for (i = FREQ_TABLE_OFFSET | 0; (i | 0) < (i_end | 0); i = i + 4 | 0) {
HEAPI32[node_i >> 2] = j;
node_i = node_i + 4 | 0;
HEAPI32[node_i >> 2] = HEAPI32[i >> 2] | 0;
node_i = node_i + 4 | 0;
HEAPI32[node_i >> 2] = 0;
node_i = node_i + 4 | 0;
HEAPI32[node_i >> 2] = 0;
node_i = node_i + 4 | 0;
j = j + 1 | 0;
}
HUFF_NODES_LENGTH = 256;
// Create a list of sorted huffman nodes, using insertion sort.
node_i = HUFF_NODES_OFFSET | 0;
i_end = HUFF_NODES_OFFSET + (16 * HUFF_NODES_LENGTH | 0) | 0;
for (; (node_i | 0) < (i_end | 0); node_i = node_i + 16 | 0) {
// Copy all values of the current node to temporary variables.
tmp1 = (HEAPI32[(node_i ) >> 2] | 0) | 0;
tmp2 = (HEAPI32[(node_i + 4) >> 2] | 0) | 0;
tmp3 = (HEAPI32[(node_i + 8) >> 2] | 0) | 0;
tmp4 = (HEAPI32[(node_i + 12) >> 2] | 0) | 0;
node_j = node_i;
// Shift all element with a higher frequencies than the current
// frequency with one position to the end of the array.
while((node_j | 0) > (HUFF_NODES_OFFSET | 0)) {
if ((HEAPI32[(node_j - 12 | 0) >> 2] | 0) <= (tmp2 | 0))
break;
HEAPI32[(node_j ) >> 2] = HEAPI32[(node_j - 16) >> 2];
HEAPI32[(node_j + 4) >> 2] = HEAPI32[(node_j - 12) >> 2];
HEAPI32[(node_j + 8) >> 2] = HEAPI32[(node_j - 8) >> 2];
HEAPI32[(node_j + 12) >> 2] = HEAPI32[(node_j - 4) >> 2];
node_j = node_j - 16 | 0;
}
// Store the saved values in the empty slot.
HEAPI32[(node_j ) >> 2] = tmp1;
HEAPI32[(node_j + 4) >> 2] = tmp2;
HEAPI32[(node_j + 8) >> 2] = tmp3;
HEAPI32[(node_j + 12) >> 2] = tmp4;
}
node_i = HUFF_NODES_OFFSET | 0;
i_end = HUFF_NODES_OFFSET + (16 * HUFF_NODES_LENGTH | 0) | 0;
// Construct the tree of huffman nodes. The construction stops when
// there is one node left. The remaining node is the root node of the
// huffman tree.
while ((node_i + 16 | 0) < (i_end | 0)) {
// Get the symbol list and frequency of the first node.
tmp1 = HEAPI32[(node_i ) >> 2] | 0;
tmp2 = HEAPI32[(node_i + 4) >> 2] | 0;
// Get the symbol list and frequency of the second node.
node_j = node_i + 16 | 0;
tmp3 = HEAPI32[(node_j ) >> 2] | 0;
tmp4 = HEAPI32[(node_j + 4) >> 2] | 0;
// Store the new huffman node in the huffman nodes list.
HEAPI32[(i_end ) >> 2] = 0 | 0;
HEAPI32[(i_end + 4) >> 2] = tmp2 + tmp4 | 0;
if ((tmp2 | 0) > (tmp4 | 0)) {
HEAPI32[(i_end + 8) >> 2] = node_j | 0;
HEAPI32[(i_end + 12) >> 2] = node_i | 0;
} else {
HEAPI32[(i_end + 8) >> 2] = node_i | 0;
HEAPI32[(i_end + 12) >> 2] = node_j | 0;
}
// Pop the first two nodes from the huffman nodes list.
node_i = node_i + 32 | 0;
// Apply insertion sort on the last inserted node.
// Copy all values of the current node to temporary variables.
tmp1 = (HEAPI32[(i_end ) >> 2] | 0) | 0;
tmp2 = (HEAPI32[(i_end + 4) >> 2] | 0) | 0;
tmp3 = (HEAPI32[(i_end + 8) >> 2] | 0) | 0;
tmp4 = (HEAPI32[(i_end + 12) >> 2] | 0) | 0;
node_j = i_end;
// Shift all element with a higher frequencies than the current
// frequency with one position to the end of the array.
while((node_j | 0) > (HUFF_NODES_OFFSET | 0)) {
if ((HEAPI32[(node_j - 12 | 0) >> 2] | 0) <= (tmp2 | 0))
break;
HEAPI32[(node_j ) >> 2] = HEAPI32[(node_j - 16) >> 2];
HEAPI32[(node_j + 4) >> 2] = HEAPI32[(node_j - 12) >> 2];
HEAPI32[(node_j + 8) >> 2] = HEAPI32[(node_j - 8) >> 2];
HEAPI32[(node_j + 12) >> 2] = HEAPI32[(node_j - 4) >> 2];
node_j = node_j - 16 | 0;
}
// Store the saved values in the empty slot.
HEAPI32[(node_j ) >> 2] = tmp1;
HEAPI32[(node_j + 4) >> 2] = tmp2;
HEAPI32[(node_j + 8) >> 2] = tmp3;
HEAPI32[(node_j + 12) >> 2] = tmp4;
// Increase the huffman nodes list size.
i_end = i_end + 16 | 0;
}
// Generate a hashmap for faster lookup. Overwrite the frequency table,
// because it will not be used anymore when the lookup table is done.
_generateLookup(FREQ_TABLE_OFFSET, node_i, 1);
return FREQ_TABLE_OFFSET | 0;
}
function _encode(data, dataLength, lookup) {
data = data | 0;
dataLength = dataLength | 0;
lookup = lookup | 0;
var len = 0;
var buf = 0;
var buf_index = 0;
var buf_length = 32;
var available = 0;
var msb = 0;
var tmp = 0;
var data_i = 0;
var replace = 0;
var i = 0;
var i_end = 0;
i_end = (data + dataLength) | 0;
for (i = data | 0; (i | 0) < (i_end | 0); i = i + 1 | 0) {
// Find the encoding replacement value in the lookup table
data_i = HEAPU8[i] | 0;
replace = HEAPI32[(lookup + (data_i << 2) | 0) >> 2] | 0;
// Find the first non-zero bit, or return the last bit.
msb = 0;
tmp = replace;
if (tmp & 0xffff0000) {
msb = msb + 16 | 0;
tmp = tmp >> 16 | 0;
}
if (tmp & 0x0000ff00) {
msb = msb + 8 | 0;
tmp = tmp >> 8 | 0;
}
if (tmp & 0x000000f0) {
msb = msb + 4 | 0;
tmp = tmp >> 4 | 0;
}
if ((tmp | 0) >= 8)
msb = msb + 4 | 0;
else if ((tmp | 0) >= 4)
msb = msb + 3 | 0;
else if ((tmp | 0) >= 2)
msb = msb + 2 | 0;
else if ((tmp | 0) >= 1)
msb = msb + 1 | 0;
// Skip the first most significant bit. This bit is set because
// there is otherwise no way of shifting zeros to the left. The
// first significat bit should therefore be removed because it is
// not part of the replacement value.
msb = msb - 1 | 0;
available = buf_length - buf_index | 0;
// If there are enough bits available, append the bits to the
// current byte by shifting the old bits to the right and storing
// the new bits at the created space.
if ((msb | 0) <= (available | 0)) {
switch (msb | 0) {
case 0: buf = buf | (replace & 0x1); break;
case 1: buf = buf << 1 | (replace & 0x3); break;
case 2: buf = buf << 2 | (replace & 0x7); break;
case 3: buf = buf << 3 | (replace & 0xf); break;
case 4: buf = buf << 4 | (replace & 0x1f); break;
case 5: buf = buf << 5 | (replace & 0x3f); break;
case 6: buf = buf << 6 | (replace & 0x7f); break;
case 7: buf = buf << 7 | (replace & 0xff); break;
case 8: buf = buf << 8 | (replace & 0x1ff); break;
case 9: buf = buf << 9 | (replace & 0x3ff); break;
case 10: buf = buf << 10 | (replace & 0x7ff); break;
case 11: buf = buf << 11 | (replace & 0xfff); break;
case 12: buf = buf << 12 | (replace & 0x1fff); break;
case 13: buf = buf << 13 | (replace & 0x3fff); break;
case 14: buf = buf << 14 | (replace & 0x7fff); break;
case 15: buf = buf << 15 | (replace & 0xffff); break;
case 16: buf = buf << 16 | (replace & 0x1ffff); break;
case 17: buf = buf << 17 | (replace & 0x3ffff); break;
case 18: buf = buf << 18 | (replace & 0x7ffff); break;
case 19: buf = buf << 19 | (replace & 0xfffff); break;
case 20: buf = buf << 20 | (replace & 0x1fffff); break;
case 21: buf = buf << 21 | (replace & 0x3fffff); break;
case 22: buf = buf << 22 | (replace & 0x7fffff); break;
case 23: buf = buf << 23 | (replace & 0xffffff); break;
case 24: buf = buf << 24 | (replace & 0x1ffffff); break;
case 25: buf = buf << 25 | (replace & 0x3ffffff); break;
case 26: buf = buf << 26 | (replace & 0x7ffffff); break;
case 27: buf = buf << 27 | (replace & 0xfffffff); break;
case 28: buf = buf << 28 | (replace & 0x1fffffff); break;
case 29: buf = buf << 29 | (replace & 0x3fffffff); break;
case 30: buf = buf << 30 | (replace & 0x7fffffff); break;
case 31: buf = buf << 31 | (replace & 0xffffffff); break;
}
buf_index = buf_index + msb | 0;
if ((buf_index | 0) == (buf_length | 0)) {
HEAPU32[(HUFF_NODES_OFFSET + len | 0) >> 2] = buf | 0;
len = len + 4 | 0;
buf = 0;
buf_index = 0;
}
} else {
// Create a bitmask
tmp = 1 << msb;
// For each bit in the replacement bits, append the bit o the
// current byte by shifting the old bits to the right and
// storing the new bits at the created space.
for (; (msb | 0) >= 0; msb = msb - 1 | 0) {
buf = (buf << 1) | ((replace & tmp) >> msb | 0);
tmp = tmp >> 1 | 0;
buf_index = buf_index + 1 | 0;
if ((buf_index | 0) == (buf_length | 0)) {
HEAPU32[(HUFF_NODES_OFFSET + len | 0) >> 2] = buf | 0;
len = len + 4 | 0;
buf = 0;
buf_index = 0;
}
}
}
}
if (buf | 0) {
buf = buf << (buf_length - buf_index - 1) | 0;
HEAPU32[(HUFF_NODES_OFFSET + len | 0) >> 2] = buf | 0;
len = len + 4 | 0;
}
return len | 0;
}
function getInputDataOffset() {
return INPUT_DATA_OFFSET | 0;
}
function getInputDataLength() {
return INPUT_DATA_LENGTH | 0;
}
function setInputDataLength(length) {
length = length | 0;
INPUT_DATA_LENGTH = length | 0;
}
return {
_buildLookup: _buildLookup,
_encode: _encode,
getInputDataOffset: getInputDataOffset,
getInputDataLength: getInputDataLength,
setInputDataLength: setInputDataLength
};
})(STDLIB, FOREIGN, HEAP);
(function() {
function determineDataLength(data) {
var data_length = 0;
if ('length' in data) {
data_length = data.length;
} else if ('width' in data && 'height' in data) {
data_length = data.width * data.height;
} else {
throw 'Unsupported input data format';
}
return data_length;
}
function copyInputData(data_offset, data) {
var HEAPU8 = new Uint8Array(HEAP);
if (data.data)
data = data.data;
var data_length = determineDataLength(data);
// TODO: avoid copying data to the heap.
for (var i = 0; i < data_length; i++)
HEAPU8[data_offset + i] = data[i];
Huffman.setInputDataLength(data_length);
return data_length;
}
Huffman.buildLookup = function(data) {
var data_offset = Huffman.getInputDataOffset();
var data_length = copyInputData(data_offset, data);
return Huffman._buildLookup(data_offset, data_length);
};
Huffman.encode = function(data) {
var data_offset = Huffman.getInputDataOffset();
var data_length;
if (data)
data_length = copyInputData(data_offset, data);
else
data_length = Huffman.getInputDataLength();
return Huffman._encode(data_offset, data_length);
};
})();