-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain_STAR.py
286 lines (232 loc) · 12.8 KB
/
train_STAR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# import faulthandler
# faulthandler.enable()
import os
import torch
import torch.nn as nn
import numpy as np
import argparse
import random
import json
import time
import logging
from tqdm import tqdm, trange
from torch.utils.data import TensorDataset, DataLoader, RandomSampler
from utils.data_utils import Processor, MultiWozDataset
from utils.eval_utils import model_evaluation
from utils.label_lookup import get_label_lookup_from_first_token, combine_slot_values
from models.ModelBERT import UtteranceEncoding
from models.ModelBERT import BeliefTracker
from transformers import BertTokenizer
from transformers import AdamW, get_cosine_schedule_with_warmup, get_linear_schedule_with_warmup
# os.environ['CUDA_VISIBLE_DEVICES']='0'
torch.cuda.set_device(0)
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
def main(args):
def worker_init_fn(worker_id):
np.random.seed(args.random_seed + worker_id)
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
# logger
logger_file_name = args.save_dir.split('/')[1]
fileHandler = logging.FileHandler(os.path.join(args.save_dir, "%s.txt"%(logger_file_name)))
logger.addHandler(fileHandler)
logger.info(args)
# cuda setup
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logger.info("device: {}".format(device))
# set random seed
np.random.seed(args.random_seed)
random.seed(args.random_seed)
torch.manual_seed(args.random_seed)
if device == "cuda":
torch.cuda.manual_seed(args.random_seed)
torch.cuda.manual_seed_all(args.random_seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
#******************************************************
# load data
#******************************************************
processor = Processor(args)
slot_meta = processor.slot_meta
label_list = processor.label_list
num_labels = [len(labels) for labels in label_list]
logger.info(slot_meta)
tokenizer = BertTokenizer.from_pretrained(args.pretrained_model)
train_data_raw = processor.get_train_instances(args.data_dir, tokenizer)
print("# train examples %d" % len(train_data_raw))
dev_data_raw = processor.get_dev_instances(args.data_dir, tokenizer)
print("# dev examples %d" % len(dev_data_raw))
test_data_raw = processor.get_test_instances(args.data_dir, tokenizer)
print("# test examples %d" % len(test_data_raw))
logger.info("Data loaded!")
train_data = MultiWozDataset(train_data_raw,
tokenizer,
word_dropout=args.word_dropout)
num_train_steps = int(len(train_data_raw) / args.train_batch_size * args.n_epochs)
logger.info("***** Run training *****")
logger.info(" Num examples = %d", len(train_data_raw))
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", num_train_steps)
train_sampler = RandomSampler(train_data)
train_dataloader = DataLoader(train_data,
sampler=train_sampler,
batch_size=args.train_batch_size,
collate_fn=train_data.collate_fn,
num_workers=args.num_workers,
worker_init_fn=worker_init_fn)
#******************************************************
# build model
#******************************************************
## Initialize slot and value embeddings
sv_encoder = UtteranceEncoding.from_pretrained(args.pretrained_model)
for p in sv_encoder.bert.parameters():
p.requires_grad = False
new_label_list, slot_value_pos = combine_slot_values(slot_meta, label_list) # without slot head
logger.info(slot_value_pos)
slot_lookup = get_label_lookup_from_first_token(slot_meta, tokenizer, sv_encoder, device)
value_lookup = get_label_lookup_from_first_token(new_label_list, tokenizer, sv_encoder, device)
model = BeliefTracker(args, slot_lookup, value_lookup, num_labels, slot_value_pos, device)
model.to(device)
## prepare optimizer
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
enc_param_optimizer = list(model.encoder.named_parameters())
enc_optimizer_grouped_parameters = [
{'params': [p for n, p in enc_param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in enc_param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
enc_optimizer = AdamW(enc_optimizer_grouped_parameters, lr=args.enc_lr)
enc_scheduler = get_linear_schedule_with_warmup(enc_optimizer, int(num_train_steps * args.enc_warmup), num_train_steps)
dec_param_optimizer = list(model.decoder.parameters())
dec_optimizer = AdamW(dec_param_optimizer, lr=args.dec_lr)
dec_scheduler = get_linear_schedule_with_warmup(dec_optimizer, int(num_train_steps * args.dec_warmup), num_train_steps)
logger.info(enc_optimizer)
logger.info(dec_optimizer)
#******************************************************
# training
#******************************************************
logger.info("Training...")
best_loss = None
best_acc = None
last_update = None
for epoch in trange(int(args.n_epochs), desc="Epoch"):
batch_loss = []
batch_acc = []
for step, batch in enumerate(tqdm(train_dataloader)):
model.train()
batch = [b.to(device) if b is not None else b for b in batch]
input_ids, segment_ids, input_mask, label_ids = batch
# forward
loss, _, acc, _, _ = model(input_ids=input_ids, attention_mask=input_mask,
token_type_ids=segment_ids, labels=label_ids)
loss.backward()
enc_optimizer.step()
enc_scheduler.step()
dec_optimizer.step()
dec_scheduler.step()
model.zero_grad()
batch_loss.append(loss.item())
batch_acc.append(acc)
if step % 300 == 0:
print("[%d/%d] [%d/%d] mean_loss: %.6f, mean_joint_acc: %.6f" % \
(epoch+1, args.n_epochs, step, len(train_dataloader), np.mean(batch_loss), np.mean(batch_acc)))
batch_loss = []
batch_acc = []
if epoch > args.n_epochs / 2 and step > 0 and step % args.eval_step == 0:
eval_res = model_evaluation(model, dev_data_raw, tokenizer, slot_meta, label_list, epoch*10+step/args.eval_step)
if last_update is None or best_loss > eval_res['loss']:
best_loss = eval_res['loss']
save_path = os.path.join(args.save_dir, 'model_best_loss.bin')
torch.save(model.state_dict(), save_path)
print("Best Loss : ", best_loss)
print("\n")
if last_update is None or best_acc < eval_res['joint_acc']:
best_acc = eval_res['joint_acc']
save_path = os.path.join(args.save_dir, 'model_best_acc.bin')
torch.save(model.state_dict(), save_path)
print("Best Acc : ", best_acc)
print("\n")
logger.info("*** Step=%d, Dev Loss=%.6f, Dev Acc=%.6f, Dev Turn Acc=%.6f, Best Loss=%.6f, Best Acc=%.6f ***" % \
(step, eval_res['loss'], eval_res['joint_acc'], eval_res['joint_turn_acc'], best_loss, best_acc))
if epoch > args.n_epochs / 2 and step > 0 and step % args.eval_step == 0:
eval_res = model_evaluation(model, test_data_raw, tokenizer, slot_meta, \
label_list, epoch*10+step/args.eval_step)
logger.info("*** Step=%d, Tes Loss=%.6f, Tes Acc=%.6f, Tes Turn Acc=%.6f, Best Loss=%.6f, Best Acc=%.6f ***" % \
(step, eval_res['loss'], eval_res['joint_acc'], eval_res['joint_turn_acc'], best_loss, best_acc))
if (epoch+1) % args.eval_epoch == 0:
eval_res = model_evaluation(model, dev_data_raw, tokenizer, slot_meta, label_list, epoch+1)
if last_update is None or best_loss > eval_res['loss']:
best_loss = eval_res['loss']
save_path = os.path.join(args.save_dir, 'model_best_loss.bin')
torch.save(model.state_dict(), save_path)
print("Best Loss : ", best_loss)
print("\n")
if last_update is None or best_acc < eval_res['joint_acc']:
best_acc = eval_res['joint_acc']
save_path = os.path.join(args.save_dir, 'model_best_acc.bin')
torch.save(model.state_dict(), save_path)
last_update = epoch
print("Best Acc : ", best_acc)
print("\n")
logger.info("*** Epoch=%d, Last Update=%d, Dev Loss=%.6f, Dev Acc=%.6f, Dev Turn Acc=%.6f, Best Loss=%.6f, Best Acc=%.6f ***" % (epoch, last_update, eval_res['loss'], eval_res['joint_acc'], eval_res['joint_turn_acc'], best_loss, best_acc))
if (epoch+1) % args.eval_epoch == 0:
eval_res = model_evaluation(model, test_data_raw, tokenizer, slot_meta, label_list, epoch+1)
logger.info("*** Epoch=%d, Last Update=%d, Tes Loss=%.6f, Tes Acc=%.6f, Tes Turn Acc=%.6f, Best Loss=%.6f, Best Acc=%.6f ***" % (epoch, last_update, eval_res['loss'], eval_res['joint_acc'], eval_res['joint_turn_acc'], best_loss, best_acc))
if last_update + args.patience <= epoch:
break
print("Test using best loss model...")
best_epoch = 0
ckpt_path = os.path.join(args.save_dir, 'model_best_loss.bin')
model = BeliefTracker(args, slot_lookup, value_lookup, num_labels, slot_value_pos, device)
ckpt = torch.load(ckpt_path, map_location='cpu')
model.load_state_dict(ckpt)
model.to(device)
test_res = model_evaluation(model, test_data_raw, tokenizer, slot_meta, label_list,
best_epoch, is_gt_p_state=False)
logger.info("Results based on best loss: ")
logger.info(test_res)
#----------------------------------------------------------------------
print("Test using best acc model...")
ckpt_path = os.path.join(args.save_dir, 'model_best_acc.bin')
model = BeliefTracker(args, slot_lookup, value_lookup, num_labels, slot_value_pos, device)
ckpt = torch.load(ckpt_path, map_location='cpu')
model.load_state_dict(ckpt)
model.to(device)
test_res = model_evaluation(model, test_data_raw, tokenizer, slot_meta, label_list,
best_epoch+1, is_gt_p_state=False)
logger.info("Results based on best acc: ")
logger.info(test_res)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--data_dir", default='data/mwz2.1', type=str)
parser.add_argument("--pretrained_model", default='bert-base-uncased', type=str)
parser.add_argument("--save_dir", default='out-bert/exp', type=str)
parser.add_argument("--attn_type", default='softmax', type=str,
help="softmax or tanh")
parser.add_argument("--random_seed", default=42, type=int)
parser.add_argument("--num_workers", default=4, type=int)
parser.add_argument("--train_batch_size", default=16, type=int)
parser.add_argument("--enc_warmup", default=0.1, type=float)
parser.add_argument("--dec_warmup", default=0.1, type=float)
parser.add_argument("--enc_lr", default=4e-5, type=float)
parser.add_argument("--dec_lr", default=1e-4, type=float)
parser.add_argument("--n_epochs", default=12, type=int)
parser.add_argument("--eval_epoch", default=1, type=int)
parser.add_argument("--eval_step", default=10000, type=int,
help="Within each epoch, do evaluation as well at every eval_step")
parser.add_argument("--dropout_prob", default=0.1, type=float)
parser.add_argument("--word_dropout", default=0.1, type=float)
parser.add_argument("--max_seq_length", default=512, type=int)
parser.add_argument("--patience", default=8, type=int)
parser.add_argument("--attn_head", default=4, type=int)
parser.add_argument("--num_history", default=20, type=int)
parser.add_argument("--distance_metric", default="euclidean", type=str,
help="euclidean or cosine")
parser.add_argument("--num_self_attention_layer", default=6, type=int)
args = parser.parse_args()
print('pytorch version: ', torch.__version__)
# print(args)
main(args)