
FullLimited

Background None

Getting connected

Being disconnected

appDidConnect

ap
p

D
id

Fi
n

is
h

La
u

n
ch

appDidFinishLaunchappDidEnterBackground

appDidBecomeActive

Intermediate

Intermediate

ap
p

D
id

C
lo

se

Intermediate

appDidClose

AppDidBecomeInactive

Intermediate

appDidBecomeActive

Intermediate

ap
p

D
id

En
te

rB
ac

kg
ro

u
n

d

appDidBecomeInactive

Intermediate

Intermediate

Intermediate

Any HMI level

appDidDisconnect

iOS: (no equivalent exist) -> SDL:appDidConnect
(telling the app it got connected and registered)
iOS: (no equivalent exist) -> SDL:appDidDisconnect
(telling the app it got disconnected or unregistered)

iOS:applicationWillFinishLaunchWithOptions -> SDL: (no equivalent planned)
(Can be added between onProxyOpened and RegisterAppInterface)
(Used hardly ever in the wild therefore not planned)
iOS:applicationDidFinishLaunchWithOptions -> SDL:appDidFinishLaunch
(called on first transition to any HMI level other than NONE)
iOS:applicationWillTerminate -> SDL: appDidClose
(HMI NONE can be treated as an unlaunched app)
(also called when getting connected and immediately entering any level other than NONE)

iOS:applicationDidEnterBackground -> SDL:appDidEnterBackground
(transition to HMI BACKGROUND)
iOS:applicationWillEnterForeground -> SDL:appDidBecomeInactive
iOS:applicationWillResignActive -> SDL:appDidBecomeInactive
(transition to HMI LIMITED)
(similar to the state on iOS between foreground and background)
iOS:applicationDidBecomeActive -> SDL:appDidBecomeActive
(transition to HMI FULL, the real foreground state)

Intermediate boxes are just
for improving the overview

+ appDidConnect(app: SDLApplication)
+ appDidDisconnect(app: SDLApplication)

+ appDidFinishLaunch(app: SDLApplication)
+ appDidClose(app: SDLApplication)

+ appDidEnterBackground(app: SDLApplication)
+ appDidBecomeInactive(app: SDLApplication)
+ appDidBecomeActive(app: SDLApplication)

+ appWillChangeRegistration(app: SDLApplication)
+ appDidChangeRegistration(app: SDLApplication)

SDLApplicationDelegate (protocol)

+ sharedApplication

+ configuration: SDLApplicationConfiguration
- proxy: SDLProxy

+ windows: [SDLWindow] { get; }
+ keyWindow: SDLWindow { get; }
+ delegate: id<SDLApplicationDelegate>

+ menuManager: SDLMenuManager

+ localization: SDLLocalization

+ language: Language
+ systemVersion: String
+ sdlVersion: String
+ msgVersion: SDLMsgVersion
+ vehicleType: SDLVehicleType
+ supportedDiagnosticModes: [Int]
+ prerecordedSpeech: [PrerecordedSpeech]
+ speechCapabilities: [SpeechCapabilities]
+ vrCapabilities: [VrCapabilities]
+ audioPassThruCapabilities: [AudioPassThruCapabilities]
+ hmiZoneCapabilities: [HmiZoneCapabilities]
+ buttonCapabilities: [ButtonCapabilities]
+ hmiCapabilities: HMICapabilities

+ displayLanguage: Language
+ displayCapabilities: DisplayCapabilities
+ presetBankCapabilities: PresetBankCapabilities
+ softButtonCapabilities: [SoftButtonCapabilities]

SDLApplication (class)

+ appName: String
+ shortAppName: String
+ speechAppName: [SDLTTSChunk]
+ voiceRecognitionAppNames: [String]
+ appId: String
+ appIcon: SDLFile
+ tcpDebug (Mode|IPAddress|Port)
+ resumeHash (TODO how to support consecutive cycles)
+ appType: SDLAppHMIType (includes isMedia type)
+ language: SDLLanguage (needed? Why not auto set or
use first element of supported languages)
+ languagesSupported: [SDLLanguage]
+ securityManager [SDLSecurityType.Class]
+ logOutputSettings: SDLLogOutput (bitmask)
- deviceInfo: SDLDeviceInfo
- appInfo: SDLAppInfo

+ lockScreenConfiguration

SDLApplicationConfiguration

SDLApplicationMain(principalClass, delegateClass, configuration)

Similar to SDLManagerDelegate
Equivalent notificatoins for notification center

Similar to SDLLifecycleManager

Start point

Init()

Create View Controller instance because the app got into foreground and the root view controller has tobe created or another view controller was pushed

loadView

View controller is about to become visible for the first time
app should create and prepare view content in the next method

viewDidLoad

View stuff is ready and next method is for anything else (e.g. data etc.)

viewWillAppear

View is about to appear (transition into this view controller starting)

viewDidAppear

View is now visible on the screen (transition into this view controller done)

viewWillDisappear

Now the view controller is active and visible and the user is interacting with this view controller

viewDidDisappear

View is not visible anymore

View controller
is now active

View is about to disappear (transition into another view controller or app hmi level changed)
View controller

is now in
background
(HMI not full
or another

view controller
is in front of it)

App entered background level or another
view controller got pushed above it

App reentered foreground or
the pushed view controller got pop‘d

viewDidUnload

Not happy about this transition but can be used to indicate unloading anything because the view cotnroler instance is about to be disposed

dealloc

Memory now gets free. Latest here the app should dealloc other data related to this view controller

end

+ window: SDLWindow (weak)

+ redraw()
+ showViewController(vc: SDLViewController)
+ presentViewCotroller(vc: SDLModalController, completion: BLOCK)

+ view: SDLView

+ loadView()
+ viewDidLoad()
+ viewWillAppear()
+ viewDidAppear()
+ viewWillDisappear()
+ viewDidDisappear()

+ shouldCreateLocalMenu()
+ shouldRemoveLocalMenu()

SDLViewController (class)

// equivalent to pushVC on iOS
+ showViewController(vc: SDLViewController)

+ viewControllers. [SDLViewController]
+ topViewController: SDLViewController

SDLNavigationController : SDLViewController

+ duration: NSTimeInterval (in seconds)
+ message: String (multi line string is OK)

SDLModalViewController : SDLViewController

(+ duration will cover alert.duration param)
(+ message will cover alertText[123])
+ buttons [SDLSoftButton]
+ speech [TtsChunk]
+ shouldPlayTone: Bool
+ progressIndicator: Bool

SDLAlertController

(+ duration covers timeout)
(+ message covers scrollableMessageBody)
+ buttons [SDLSoftButton]

SDLMessageController

(+ duration will cover timeout)
(+ message will cover sliderFooter)
+ title: String (for sliderHeader)
+ valueLables [String] (overrides .messasge)
+ minimumValue
+ maximumValue
+ value

SDLSliderController

(+ duration will cover timeout)
(+ message will cover initialText)
+ initialPrompt

+ choiceSet: SDLChoiceSet

+ manualInteraction: SDLManualInteraction

+ voiceInteraction: SDLVoiceInteraction

SDLInteractionController

SDLMediaViewController

(+ duration will cover maxDuration)
(+ message covers aPTDisplayText[12])
+ muteMediaSource (muteAudio)

(necessary? it's not used in the hmi spec)
+ samplingRate
+ bitsPerSample
+ audioType

SDLAudioInputController

+ decorate(show: SDLShow)
+ superView: SDLView

SDLView

Accepts a list of views and specifies the template to use for the view
controller depending on the view types.

+ init() // auto decide template
+ init(template: SDLTemplate) // specific temlate regardless of views

+ setViews(main: SDLView, second: SDLView, buttons: SDLButtonView)

SDLTemplateView

A text view
managing and
decorating all the
main fields and the
media track.

SDLTextView

An image view
managing and
decorating the one
specific graphic
(either primary or
secondary graphic).

SDLImageView

A view managing and decorating a
list of soft buttons

+ layoutMode: SDLButtonLayout

SDLButtonView

Layout name Main view Second view Button view Comment

DEFAULT any any any Fallback for a non media app

MEDIA any any any Always used when app registers as a media app

NON_MEDIA any any any Alternative fallback for a non media app

ONSCREEN_PRESETS nil nil nil When no view is set as a non media app?

TEXT_WITH_GRAPHIC SDLTextView SDLImageView nil

GRAPHIC_WITH_TEXT SDLImageView SDLTextView nil

TILES_ONLY nil nil SDLButtonView If button view is set to TEXT_TILE, IMAGE_TILE

or DEFAULT_TILE

or SDLButtonView nil nil If button view is set to TEXT_TILE, IMAGE_TILE

or DEFAULT_TILE

TEXTBUTTONS_ONLY nil nil SDLButtonView If button view is set to TEXT or DEFAULT

or SDLButtonView nil nil If button view is set to TEXT or DEFAULT

TILES_WITH_GRAPHIC SDLButtonView SDLImageView nil If button view is set to TEXT_TILE, IMAGE_TILE

or DEFAULT_TILE

GRAPHIC_WITH_TILES SDLImageView SDLButtonView nil If button view is set to TEXT_TILE, IMAGE_TILE

or DEFAULT_TILE

GRAPHIC_WITH_TEXT_AND_SOFTBUTTONS SDLImageView SDLTextView SDLButtonView If button view is set to TEXT, IMAGE or DEFAULT

TEXT_AND_SOFTBUTTONS_WITH_GRAPHIC SDLTextView SDLImageView SDLButtonView If button view is set to TEXT, IMAGE or DEFAULT

TEXTBUTTONS_WITH_GRAPHIC SDLButtonView SDLImageView nil If button view is set to TEXT or DEFAULT

GRAPHIC_WITH_TEXTBUTTONS SDLImageView SDLButtonView nil If button view is set to TEXT or DEFAULT

LARGE_GRAPHIC_WITH_SOFTBUTTONS SDLImageView nil SDLButtonView

DOUBLE_GRAPHIC_WITH_SOFTBUTTONS SDLImageView SDLImageView SDLButtonView

LARGE_GRAPHIC_ONLY SDLImageView nil nil

NAV_FULLSCREEN_MAP ?? ?? ??

NAV_LIST ?? ?? ??

NAV_KEYBOARD ?? ?? ??

+ application: SDLApplication (weak)
+ rootViewController: SDLViewController

SDLWindow

+ TEXT
+ IMAGE

+ DEFAULT (TEXT & IMAGE)

+ TEXT_TILE
+ IMAGE_TILE
+ DEFAULT_TILE (TEXT_TILE&IMAGE_TILE)

SDLButtonViewLayout

+ choiceName: String (internal identifier)
+ text
+ detailedText
+ rightHandText
+ voiceCommands: [String]
+ image: SDLImage
+ rightHandImage: SDLImage

SDLChoiceItem

+ layout: SDLInteractionLayout

+ keyboardProperties: SDLKeyboardProperties

SDLManualInteraction

+ dynamicSet: Bool

If dynamic it will treat internally each choice Item as a separate
interaction choice set. This way the app can reuse each choice item
in any desired order (e.g. spotify and „recently played“ playback
queues).

This can dramatically improve the performance in specific use
cases and makes it extremely easy for the app developer when
interacting with a choice set that receives only small but recent
changes.

Limitation is that only 100 choice items can be performed within
an interaction (with some rare exceptions).

It not dynamic this choice set can contain > 100 items which are
divided internally to match API limitations

SDLChoiceSet:
 NSMutableOrderedSet<SDLChoiceItem>

- choiceSets: [Int: SDLChoiceSetInternal]

+ createChoiceSet(SDLChoiceSet)
Creates one or more choice sets but with respect
to the existing ones (or those that are being
created).

SDLChoiceSetManager

+ LIST
+ TILE
+ KeyboardOnly

SDLInteractionLayout

+ choiceSet: [Int: String]
+ status: (Creating or Created)

The first int is the choice set id that contains
multiple choices. Each choice is described by the
unique id and name.

A choice can occur multiple times in different
sets. Therefore they will have different choice ids.

SDLChoiceSetInternal

+ helpPrompt
+ timeoutPrompt
+ helpItems

SDLVoiceInteraction

Work in progress

+ beginLocalMenuTransaction()
+ beginGlobalMenuTransaction()

SDLMenuManager

+ helpPrompt
+ timeoutPrompt
+ voiceHelpItems

SDLGlobalPropertiesManager

SubMenus but also the root menu
(defining the menu name property in
global properties)

+ items: [SDLMenuItem]

SDLMenu

+ action (BLOCK)

SDLMenuOption

- id: Int
+ name: String
+ index: Int

- generateID()

SDLMenuItem

Work in progress

	ios-enhanced-framework.vsd
	Application lifecycle
	Application classes
	View controller lifecycle
	View controller classes
	View classes
	Interaction classes
	Menu classes

