-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_xnli.py
276 lines (229 loc) · 11.4 KB
/
run_xnli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import logging
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
from transformers import AdamW, get_linear_schedule_with_warmup, get_constant_schedule
import util
import time
from tensorize import XnliDataProcessor
from os.path import join
from datetime import datetime
import sys
import pickle
from model_xnli import TransformerXnli
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from torch.optim.lr_scheduler import LambdaLR
from sklearn.metrics import classification_report
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger()
class XnliRunner:
def __init__(self, config_name, gpu_id=0, seed=None):
self.name = config_name
self.name_suffix = datetime.now().strftime('%b%d_%H-%M-%S')
self.gpu_id = gpu_id
self.seed = seed
# Set up config
self.config = util.initialize_config(config_name)
# Set up logger
log_path = join(self.config['log_dir'], 'log_' + self.name_suffix + '.txt')
logger.addHandler(logging.FileHandler(log_path, 'a'))
logger.info(f'Log file path: {log_path}')
# Set up seed
if seed:
util.set_seed(seed)
# Set up device
self.device = torch.device('cpu' if gpu_id is None else f'cuda:{gpu_id}')
# Set up data
self.data = XnliDataProcessor(self.config)
def initialize_model(self, saved_suffix=None, config_name=None):
num_labels = len(self.data.get_labels())
model = TransformerXnli(self.config, num_labels)
if saved_suffix:
self.load_model_checkpoint(model, saved_suffix, config_name)
if self.config['freeze_emb']:
model.freeze_emb()
return model
def prepare_inputs(self, batch, with_labels=True):
inputs = {
'input_ids': batch[0],
'attention_mask': batch[1],
'token_type_ids': batch[2],
'lang_ids': batch[3]
}
if with_labels:
inputs['labels'] = batch[-1]
return inputs
def train(self, model):
conf = self.config
logger.info(conf)
epochs, batch_size, grad_accum = conf['num_epochs'], conf['batch_size'], conf['gradient_accumulation_steps']
model.to(self.device)
# Set up tensorboard
tb_path = join(conf['tb_dir'], self.name + '_' + self.name_suffix)
tb_writer = SummaryWriter(tb_path, flush_secs=30)
logger.info(f'Tensorboard summary path: {tb_path}')
# Set up data
train_dataset = self.data.get_data('train', 'en', only_dataset=True)
dev_dataset = self.data.get_data('dev', 'en', only_dataset=True)
train_dataloader = DataLoader(train_dataset, sampler=RandomSampler(train_dataset), batch_size=batch_size, drop_last=False)
# Set up optimizer and scheduler
total_update_steps = len(train_dataloader) * epochs // grad_accum
optimizer = self.get_optimizer(model)
scheduler = self.get_scheduler(optimizer, total_update_steps)
# Get model parameters for grad clipping
trained_params = model.parameters()
# Start training
logger.info('*******************Training*******************')
logger.info('Num samples: %d' % len(train_dataset))
logger.info('Num epochs: %d' % epochs)
logger.info('Gradient accumulation steps: %d' % grad_accum)
logger.info('Total update steps: %d' % total_update_steps)
loss_during_accum = [] # To compute effective loss at each update
loss_during_report = 0.0 # Effective loss during logging step
loss_history = [] # Full history of effective loss; length equals total update steps
max_acc = 0
start_time = time.time()
model.zero_grad()
for epo in range(epochs):
for batch in train_dataloader:
# Forward pass
model.train()
inputs = self.prepare_inputs(batch, with_labels=True)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
loss, _ = model(**inputs)
# Backward; accumulate gradients and clip by grad norm
if grad_accum > 1:
loss /= grad_accum
loss.backward()
loss_during_accum.append(loss.item())
# Update
if len(loss_during_accum) % grad_accum == 0:
if conf['max_grad_norm']:
torch.nn.utils.clip_grad_norm_(trained_params, conf['max_grad_norm'])
optimizer.step()
model.zero_grad()
scheduler.step()
# Compute effective loss
effective_loss = np.sum(loss_during_accum).item()
loss_during_accum = []
loss_during_report += effective_loss
loss_history.append(effective_loss)
# Report
if len(loss_history) % conf['report_frequency'] == 0:
# Show avg loss during last report interval
avg_loss = loss_during_report / conf['report_frequency']
loss_during_report = 0.0
end_time = time.time()
logger.info('Step %d: avg loss %.2f; steps/sec %.2f' %
(len(loss_history), avg_loss, conf['report_frequency'] / (end_time - start_time)))
start_time = end_time
tb_writer.add_scalar('Training_Loss', avg_loss, len(loss_history))
tb_writer.add_scalar('Learning_Rate_Bert', scheduler.get_last_lr()[0], len(loss_history))
# Evaluate
if len(loss_history) > 0 and len(loss_history) % conf['eval_frequency'] == 0:
metrics, _, _, _, _ = self.evaluate(model, dev_dataset, len(loss_history), tb_writer)
if metrics['acc'] > max_acc:
max_acc = metrics['acc']
self.save_model_checkpoint(model, len(loss_history))
logger.info(f'Eval max acc: {max_acc:.4f}')
start_time = time.time()
logger.info('**********Finished training**********')
logger.info('Actual update steps: %d' % len(loss_history))
# Eval at the end
metrics, _, _, _, _ = self.evaluate(model, dev_dataset, len(loss_history), tb_writer)
if metrics['acc'] > max_acc:
max_acc = metrics['acc']
self.save_model_checkpoint(model, len(loss_history))
logger.info(f'Eval max acc: {max_acc:.4f}')
# Wrap up
tb_writer.close()
return loss_history
def evaluate(self, model, dataset, step=0, tb_writer=None, output_results_file=None, dropout=False, print_report=False):
conf = self.config
logger.info(f'Step {step}: evaluating on {len(dataset)} samples...')
dataloader = DataLoader(dataset, sampler=SequentialSampler(dataset), batch_size=conf['eval_batch_size'])
# Get results
model.eval()
if dropout:
model.train()
model.to(self.device)
all_logits, all_labels, all_un = [], [], []
for batch in dataloader:
inputs = self.prepare_inputs(batch, with_labels=False)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
logits, un = model(**inputs)
all_logits.append(logits.detach().cpu())
all_labels.append(batch[-1])
all_un.append(None if un is None else un.detach().cpu())
all_logits = torch.cat(all_logits, dim=0).numpy()
all_labels = torch.cat(all_labels, dim=0).numpy()
all_un = None if all_un[0] is None else torch.cat(all_un, dim=0).numpy()
results = all_logits, all_labels, all_un
if output_results_file:
with open(output_results_file, 'wb') as f:
pickle.dump(results, f)
# Evaluate
metrics, preds, labels, probs, (logits, un) = self.evaluate_from_results(results, print_report=print_report)
if tb_writer:
for name, val in metrics.items():
tb_writer.add_scalar(f'Train_Eval_{name}', val, step)
return metrics, preds, labels, probs, (logits, un)
def evaluate_from_results(self, results, print_report=False):
conf = self.config
all_logits, all_labels, all_un = results
all_probs = TransformerXnli.get_probs(all_logits, evi_un=conf['evi_un'])
all_preds = all_probs.argmax(axis=-1)
metrics = {'acc': util.compute_acc(all_preds, all_labels)}
if print_report:
logger.info(f'\n{classification_report(all_labels, all_preds, target_names=self.data.get_labels())}')
return metrics, all_preds, all_labels, all_probs, (all_logits, all_un)
def get_optimizer(self, model):
no_decay = ['bias', 'LayerNorm.weight']
grouped_param = [
{
'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': self.config['adam_weight_decay']
}, {
'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
'weight_decay': 0.0
}
]
optimizer = AdamW(grouped_param, lr=self.config['bert_learning_rate'], eps=self.config['adam_eps'])
return optimizer
def get_scheduler(self, optimizer, total_update_steps):
if self.config['model_type'] == 'mt5':
# scheduler = get_constant_schedule(optimizer)
cooldown_start = int(total_update_steps * 0.7)
def lr_lambda(current_step: int):
return 1 if current_step < cooldown_start else 0.3
return LambdaLR(optimizer, lr_lambda, -1)
else:
warmup_steps = int(total_update_steps * self.config['warmup_ratio'])
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps,
num_training_steps=total_update_steps)
return scheduler
def save_model_checkpoint(self, model, step):
path_ckpt = join(self.config['log_dir'], f'model_{self.name_suffix}.bin')
torch.save(model.state_dict(), path_ckpt)
logger.info('Saved model to %s' % path_ckpt)
def load_model_checkpoint(self, model, suffix, config_name=None):
if config_name is None:
path_ckpt = join(self.config['log_dir'], f'model_{suffix}.bin')
else:
path_ckpt = join(self.config['log_root'], config_name, f'model_{suffix}.bin')
model.load_state_dict(torch.load(path_ckpt, map_location=torch.device('cpu')), strict=True)
logger.info('Loaded model from %s' % path_ckpt)
if __name__ == '__main__':
# Train
config_name, gpu_id = sys.argv[1], int(sys.argv[2])
runner = XnliRunner(config_name, gpu_id)
model = runner.initialize_model()
runner.train(model)
# # Eval en dev
# config_name, suffix, gpu_id = sys.argv[1], sys.argv[2], int(sys.argv[3])
# runner = XnliRunner(config_name, gpu_id)
# model = runner.initialize_model(saved_suffix=suffix)
# runner.evaluate(model, runner.data.get_data('dev', 'en', only_dataset=True), print_report=True)