-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_segconvnet.py
414 lines (346 loc) · 15.9 KB
/
train_segconvnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
__copyright__ = """
SLAMcore Limited
All Rights Reserved.
(C) Copyright 2024
NOTICE:
All information contained herein is, and remains the property of SLAMcore
Limited and its suppliers, if any. The intellectual and technical concepts
contained herein are proprietary to SLAMcore Limited and its suppliers and
may be covered by patents in process, and are protected by trade secret or
copyright law.
"""
__license__ = "CC BY-NC-SA 3.0"
import os
import time
import argparse
import shutil
import numpy as np
import torch
import torch.nn as nn
from torch.utils.tensorboard import SummaryWriter
import config
from networks.SegConvNet import SegConvNet
from dataio.segment_dataset import SegmentDatasetTrain, SegmentDatasetTest
from dataio.utils import get_scene_list
from config import save_config
from metric.iou import IoU3D
def load_data(cfg):
train_list = get_scene_list(cfg.train_file)
train_set = SegmentDatasetTrain(cfg.label_fusion_dir,
cfg.segment_suffix,
train_list,
k=cfg.k,
data_aug=cfg.data_aug,
feat_type=cfg.feat_type,
use_xyz=cfg.use_xyz
)
train_loader = train_set.get_dataloader(
batch_size=cfg.batch_size,
num_workers=cfg.num_workers,
use_custom_sampler=cfg.use_custom_sampler,
drop_last=True
)
val_list = get_scene_list(cfg.val_file)
val_set = SegmentDatasetTest(cfg.label_fusion_dir,
cfg.segment_suffix,
val_list,
k=cfg.k,
feat_type=cfg.feat_type,
use_xyz=cfg.use_xyz
)
val_loader = val_set.get_dataloader()
class_encoding = train_set.color_encoding
num_classes = len(class_encoding)
print("Number of classes to predict:", num_classes)
print("Train dataset size:", len(train_set))
print("Validation dataset size:", len(val_set))
# load pre-computed class weights
class_weights = np.loadtxt(cfg.class_weights_file)
# ignore_index = list(class_encoding).index('unlabeled')
# class_weights[ignore_index] = 0.0
return train_loader, val_loader, class_weights, class_encoding
def create_logdir(cfg):
os.makedirs(cfg.log_dir, exist_ok=True)
os.makedirs(cfg.event_dir, exist_ok=True)
os.makedirs(cfg.save_dir, exist_ok=True)
class Train:
def __init__(self, model, data_loader, optim, criterion, metric, device, lr_scheduler=None, global_step=0, writer=None):
self.model = model
self.data_loader = data_loader
self.optim = optim
self.criterion = criterion
self.metric = metric
self.device = device
self.global_step = global_step
self.writer = writer
self.lr_scheduler = lr_scheduler
def run_epoch(self, print_every=0):
"""Runs an epoch of training.
Keyword arguments:
- iteration_loss (``bool``, optional): Prints loss at every step.
Returns:
- The epoch loss (float).
"""
self.model.train()
epoch_loss = 0.0
self.metric.reset()
avgTime = 0.0
numTimeSteps = 0
for step, batch_data in enumerate(self.data_loader):
startTime = time.time()
# Get the inputs and labels
xyz = batch_data["locs"].to(self.device) # [1, N_seg_batch, 3]
cov = batch_data["covs"].to(self.device) # [1, N_seg_batch, 3, 3]
feat = batch_data["feats"].to(self.device) # [1, N_seg_batch, C]
knn_indices = batch_data["knn_indices"].to(self.device) # [N_seg_batch, K]
label = batch_data["labels"].long().to(self.device) # [1, N_seg_batch]
B, N, C = feat.shape
# Forward propagation
out = self.model(xyz, cov, feat, knn_indices) # [1, n_classes, N_seg_batch]
# Loss computation CrossEntropy
loss = self.criterion(out, label)
# Backpropagation
self.optim.zero_grad()
loss.backward()
self.optim.step()
# lr scheduler
if self.lr_scheduler:
self.lr_scheduler.step()
lr = self.lr_scheduler.get_lr()[0]
else:
lr = None
# Keep track of loss for current epoch
epoch_loss += loss.item()
# Keep track of the evaluation metric
self.metric.add(
out.detach().permute(0, 2, 1).view(B * N, -1), # [N_seg_batch, n_classes]
label.detach().view(B * N) # [N_seg_batch,]
)
endTime = time.time()
avgTime += (endTime - startTime)
numTimeSteps += 1
if print_every > 0 and (step % print_every == 0):
print("[Step: %d/%d (%3.2f ms)] Iteration loss: %.4f" % (step, len(self.data_loader), \
1000*(avgTime / (numTimeSteps if numTimeSteps>0 else 1)), loss.item()))
if self.writer:
self.writer.add_scalar("Train/loss", loss.item(), self.global_step)
if lr:
self.writer.add_scalar("Train/LR", lr, self.global_step)
numTimeSteps = 0
avgTime = 0.
self.global_step += 1
torch.cuda.empty_cache()
return epoch_loss / len(self.data_loader), self.metric.value()
class Test:
def __init__(self, model, data_loader, criterion, metric, device):
self.model = model
self.data_loader = data_loader
self.criterion = criterion
self.metric = metric
self.device = device
@torch.no_grad()
def run_epoch(self, print_every=0):
"""Runs an epoch of training.
Keyword arguments:
- iteration_loss (``bool``, optional): Prints loss at every step.
Returns:
- The epoch loss (float).
"""
self.model.eval()
epoch_loss = []
self.metric.reset()
avgTime = 0.0
numTimeSteps = 0
for step, batch_data in enumerate(self.data_loader):
startTime = time.time()
# Get the inputs and labels
xyz = batch_data["locs"].to(self.device) # [1, N_seg_batch, 3]
cov = batch_data["covs"].to(self.device) # [1, N_seg_batch, 3, 3]
feat = batch_data["feats"].to(self.device) # [1, N_seg_batch, C]
knn_indices = batch_data["knn_indices"].to(self.device) # [N_seg_batch, K]
label = batch_data["labels"].long().to(self.device) # [1, N_seg_batch]
B, N, C = feat.shape
# Forward propagation
out = self.model(xyz, cov, feat, knn_indices) # [1, n_classes, N_seg_batch]
# Loss computation
# CrossEntropy
loss = self.criterion(out, label)
# Keep track of loss for current epoch
epoch_loss.append(loss.item())
# Keep track of the evaluation metric
self.metric.add(
out.detach().permute(0, 2, 1).view(B * N, -1), # [N_seg_batch, n_classes]
label.detach().view(B * N) # [N_seg_batch,]
)
endTime = time.time()
avgTime += (endTime - startTime)
numTimeSteps += 1
if print_every > 0 and (step % print_every == 0):
print("[Step: %d/%d (%3.2f ms)] Iteration loss: %.4f" % (step, len(self.data_loader), \
1000*(avgTime / (numTimeSteps if numTimeSteps>0 else 1)), loss.item()))
numTimeSteps = 0
avgTime = 0.
return np.nanmean(np.array(epoch_loss)), self.metric.value()
def update_cfg(cfg, args):
cfg.label_fusion_dir = args.label_fusion_dir
cfg.segment_suffix = args.segment_suffix
cfg.log_dir = args.log_dir
cfg.event_dir = os.path.join(cfg.log_dir, "events")
cfg.save_dir = os.path.join(cfg.log_dir, "checkpoints")
for k, v in vars(args).items():
if v is not None:
cfg.setdefault(k, v)
return cfg
def get_model(cfg):
in_dim = 30 if cfg.use_xyz else 21
model = SegConvNet(input_feat_dim=in_dim,
num_classes=21,
dropout_p=cfg.dropout_p,
weight_in=cfg.setdefault("weight_in", "xyz"),
classifier_hidden_dims=cfg.setdefault("classifier_hidden_dims", [128, 64]))
return model
def train():
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, required=True, help="config file")
parser.add_argument("--log_dir", type=str, required=True, help="path to save log")
parser.add_argument("--label_fusion_dir", type=str, required=True, help="path to bayesian-fused scens")
parser.add_argument("--segment_suffix", type=str, required=True, help="segment suffix")
parser.add_argument("--gpu", type=int, default=0)
parser.add_argument("--eval", dest="eval", action="store_true")
parser.set_defaults(eval=False)
# setting of training SegConvNet
parser.add_argument("--epochs", type=int, default=100)
parser.add_argument("--batch_size", type=int)
parser.add_argument("--use_custom_sampler", dest="use_custom_sampler", action="store_true")
parser.add_argument("--learning_rate", type=float)
parser.add_argument("--scheduler", type=str, help="[step, onecycle]")
parser.add_argument("--lr_decay_epochs", type=int, default=30)
parser.add_argument("--lr_decay", type=float, default=0.2)
parser.add_argument("--div_factor", type=float, default=1.0)
parser.add_argument("--pct_start", type=float, default=0.05)
parser.add_argument("--final_div_factor", type=float, default=1000.0)
parser.add_argument("--anneal_strategy", type=str, default="cos")
parser.add_argument("--dropout_p", type=float, default=-1.0)
parser.add_argument("--feat_type", type=str, default="prob")
parser.add_argument("--no_xyz", dest="use_xyz", action="store_false")
parser.add_argument("--class_weights_file", type=str, default="configs/class_weights_scannet20_valid.txt")
parser.add_argument("--eval_epoch", type=int, default=99)
parser.add_argument("--k", type=int, default=10)
parser.set_defaults(use_custom_sampler=False, use_xyz=True)
# data_aug_parser = parser.add_mutually_exclusive_group(required=False)
# data_aug_parser.add_argument("--data_aug", dest="data_aug", action="store_true")
# data_aug_parser.add_argument("--no_data_aug", dest="data_aug", action="store_false")
parser.set_defaults(data_aug=True)
args = parser.parse_args()
cfg = config.load_yaml(args.config)
cfg = update_cfg(cfg, args)
create_logdir(cfg)
print(cfg)
save_config(cfg, os.path.join(cfg.log_dir, "config.yaml"))
shutil.copy("networks/LatentPriorNetwork.py", os.path.join(cfg.log_dir, "LatentPriorNetwork.py"))
shutil.copy("networks/SegConvNet.py", os.path.join(cfg.log_dir, "SegConvNet.py"))
writer = SummaryWriter(log_dir=cfg.event_dir)
# create datasets and data loaders
train_loader, val_loader, class_weights, class_encoding = load_data(cfg)
num_classes = len(class_encoding)
# create model and optimizer
device = torch.device("cuda:{}".format(args.gpu) if torch.cuda.is_available() else "cpu")
model = get_model(cfg)
model.to(device)
if class_weights is not None:
class_weights = torch.from_numpy(class_weights).float().to(device)
criterion = nn.CrossEntropyLoss(weight=class_weights, reduction=cfg.loss_reduction)
criterion_val = nn.CrossEntropyLoss(weight=class_weights, reduction=cfg.loss_reduction_test)
optimizer = torch.optim.Adam(
model.parameters(),
lr=cfg.learning_rate,
betas=(cfg.beta0, cfg.beta1),
weight_decay=cfg.weight_decay
)
# Learning rate decay scheduler
if cfg.scheduler == "none":
lr_updater = None
elif cfg.scheduler == "step":
lr_updater = torch.optim.lr_scheduler.StepLR(optimizer, cfg.lr_decay_epochs * len(train_loader), cfg.lr_decay)
elif cfg.scheduler == 'onecycle':
# len(data_loader) == number of batches
# len(dataset) == number of data points
total_steps = cfg.epochs * len(train_loader)
lr_updater = torch.optim.lr_scheduler.OneCycleLR(
optimizer,
max_lr=cfg.learning_rate,
total_steps=total_steps,
div_factor=cfg.div_factor, # initial
pct_start=cfg.pct_start,
anneal_strategy=cfg.anneal_strategy,
final_div_factor=cfg.final_div_factor
)
else:
raise NotImplementedError
# Load checkpoint if any
checkpoints = [p for p in os.listdir(cfg.save_dir) if not p.endswith("best.pth")]
if len(checkpoints) > 0:
chkpt_path = os.path.join(cfg.save_dir, sorted(checkpoints, key=lambda x: int(x[6:-4]))[-1])
print("Resume training from {}".format(chkpt_path))
chkpt = torch.load(chkpt_path, map_location=device)
model.load_state_dict(chkpt["state_dict"])
optimizer.load_state_dict(chkpt["optimizer"])
if lr_updater is not None:
lr_updater.load_state_dict(chkpt["lr_scheduler"])
start_epoch = int(chkpt["epoch"]) + 1
start_iter = chkpt["n_iter"] + 1
else:
print("Training from scratch...")
start_epoch = 0
start_iter = 0
# Evaluation metric
ignore_index = list(class_encoding).index('unlabeled')
metric = IoU3D(num_classes, ignore_index=ignore_index)
train = Train(model, train_loader, optimizer, criterion, metric, device,
lr_scheduler=lr_updater, global_step=start_iter, writer=writer)
val = Test(model, val_loader, criterion_val, metric, device)
best_miou = 0.
for epoch in range(start_epoch, cfg.epochs):
epoch_loss, (iou, miou) = train.run_epoch(cfg.print_every)
print(">>>> [Epoch: {0:d}] Avg. loss: {1:.4f} | Mean IoU: {2:.4f}".
format(epoch, epoch_loss, miou))
writer.add_scalar("Train/epoch_loss", epoch_loss, epoch)
writer.add_scalar("Train/miou", miou, epoch)
# validate
if (epoch + 1) % cfg.validate_every == 0 or epoch + 1 == cfg.epochs:
print(">>>> [Epoch: {0:d}] Validation".format(epoch))
val_loss, (iou, miou) = val.run_epoch(cfg.print_every)
print(">>>> [Epoch: {0:d}] Avg. loss: {1:.4f} | Mean IoU: {2:.4f}".
format(epoch, val_loss, miou))
writer.add_scalar("Val/epoch_loss", val_loss, epoch)
writer.add_scalar("Val/miou", miou, epoch)
for key, class_iou in zip(class_encoding.keys(), iou):
print("{0}: {1:.4f}".format(key, class_iou))
# save current best
if miou > best_miou:
checkpoint = {
'epoch': epoch,
'n_iter': train.global_step,
'miou': miou,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}
if lr_updater is not None:
checkpoint["lr_scheduler"] = lr_updater.state_dict()
torch.save(checkpoint, os.path.join(cfg.save_dir, "chkpt-best.pth"))
best_miou = miou
# save checkpoint
if epoch + 1 == cfg.epochs or (epoch + 1) % cfg.save_every == 0:
checkpoint = {
'epoch': epoch,
'n_iter': train.global_step,
'miou': miou,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}
if lr_updater is not None:
checkpoint["lr_scheduler"] = lr_updater.state_dict()
torch.save(checkpoint, os.path.join(cfg.save_dir, "chkpt-{}.pth".format(epoch)))
print("Best validation miou: {}".format(best_miou))
if __name__ == "__main__":
train()