-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathformat_reactome_data.py
267 lines (235 loc) · 11.8 KB
/
format_reactome_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
__author__ = 'Sarah Keating'
import os
import global_variables
import extract_external_data
class ReactomeData:
def __init__(self, species, data_type):
self.species = species
self.data_type = data_type
def get_data_from_reactome(self, filename):
"""
:param filename:
:return:
"""
if self.data_type == 'pathway':
return self.get_pathway_data_from_reactome(filename)
elif self.data_type == "entity":
return self.get_entity_data_from_reactome(filename)
elif self.data_type == "reaction":
return self.get_reaction_data_from_reactome(filename)
elif self.data_type == "modprot":
return self.get_modprot_data_from_reactome(filename)
else:
return []
@staticmethod
def parse_list_references(reference):
"""
Function to split multiple references for same property
:param reference: string from Reactome export '[ref;ref]'
:return: a list with each ref as an entry
"""
length = len(reference)
modified_ref = ''
if reference.startswith('[') and reference.endswith(']'):
modified_ref = reference[1:length-1]
return modified_ref.split(';')
def get_pathway_data_from_reactome(self, filename):
"""
This function creates a JSON representation of the Reactome data from a precise csv export
this emulates the results of the wikipathways query so common code can be used
The form of the csv file for a pathway is:
species,stableId,type,name,description,[publication;publication;...],goterm,[part1;part2],[partof1;partof2],None
:param filename:
:return:
"""
if not os.path.isfile(filename):
print('{0} not found aborting ...'.format(filename))
return None
f = open(filename, 'r')
lines = f.readlines()
f.close()
pathways = []
for line in lines:
variables = line.split(',')
if len(variables) != 10:
print('A line in the input csv file for a pathway expects 10 comma separated entries')
print('species,id,type,label,description,reference,goterm,haspart,ispartof,endelement')
print('Re run WikidataExport to create an accurate file')
return None
else:
species, st_id, event_type, label, description, reference, goterm, haspart, ispartof, endelement = \
line.split(',')
lorefs = self.parse_list_references(reference)
lo_haspart = self.parse_list_references(haspart)
lo_ispartof = self.parse_list_references(ispartof)
pathway = dict({'pwId': {'value': st_id, 'type': 'string'},
'pwLabel': {'value': label, 'type': 'string'},
'pwDescription': {'value': description, 'type': 'string'},
'publication': {'value': lorefs, 'type': 'list'},
'goTerm': {'value': goterm, 'type': 'string'},
'hasPart': {'value': lo_haspart, 'type': 'list'},
'isPartOf': {'value': lo_ispartof, 'type': 'list'}})
pathways.append(pathway)
b = dict({'bindings': pathways})
results = dict({'results': b})
return results
def get_entity_data_from_reactome(self, filename):
"""
This function creates a JSON representation of the Reactome data from a precise csv export
this emulates the results of the wikipathways query so common code can be used
The form of the csv file for an entity is:
species_code,entity_code,name,stableId,[part;part],complexportalid (only for complex),None
:param filename:
:return:
"""
if not os.path.isfile(filename):
print('{0} not found aborting ...'.format(filename))
return None
f = open(filename, 'r')
lines = f.readlines()
f.close()
entities = []
for line in lines:
variables = line.split(',')
if len(variables) != 6 and len(variables) != 7:
print('A line in the input csv file for an entity expects 6/7 comma separated entries')
print('species_code,entity_code,stableId,name,[part;part],'
'complexportalid (only for complex),endelement')
print('Re run WikidataExport to create an accurate file')
return None
else:
portal_id = ''
if len(variables) == 6:
species, entitytype, st_id, label, haspart, endelement = line.split(',')
else:
species, entitytype, st_id, label, haspart, portal_id, endelement = line.split(',')
if portal_id == 'None':
portal_id = ''
lo_haspart = self.parse_list_references(haspart)
description = ''
if entitytype == 'COMP':
description = 'Macromolecular complex'
elif entitytype == 'DS':
description = 'Defined set from Reactome'
elif entitytype == 'CS':
description = 'Candidate set from Reactome'
elif entitytype == 'OS':
description = 'Open set from Reactome'
entity = dict({'pwId': {'value': st_id, 'type': 'string'},
'pwLabel': {'value': label, 'type': 'string'},
'pwDescription': {'value': description, 'type': 'string'},
'hasPart': {'value': lo_haspart, 'type': 'list'},
'entitytype': entitytype, 'cportal': portal_id})
entities.append(entity)
b = dict({'bindings': entities})
results = dict({'results': b})
return results
def get_reaction_data_from_reactome(self, filename):
"""
This function creates a JSON representation of the Reactome data from a precise csv export
this emulates the results of the wikipathways query so common code can be used
The form of the csv file for a reaction is:
species_code,stableId,eventType,Name,Description,[publication;publication;..],goterm,
[haspart_input;haspart_input], [haspart_output;], [haspart_mod;..],[partof],None
:param filename:
:return:
"""
if not os.path.isfile(filename):
print('{0} not found aborting ...'.format(filename))
return None
f = open(filename, 'r')
lines = f.readlines()
f.close()
pathways = []
for line in lines:
variables = line.split(',')
if len(variables) != 12:
print('A line in the input csv file for a reaction expects 12 comma separated entries')
print('species,id,type,label,description,reference,goterm,ispartof,inputs,'
'outputs, modifiers,endelement')
print('Re run WikidataExport to create an accurate file')
return None
else:
species, st_id, event_type, label, description, reference, goterm, \
inputs, outputs, mods, ispartof, endelement = line.split(',')
lorefs = self.parse_list_references(reference)
lo_hasinput = self.parse_list_references(inputs)
lo_hasoutput = self.parse_list_references(outputs)
lo_hasmod = self.parse_list_references(mods)
lo_ispartof = self.parse_list_references(ispartof)
pathway = dict({'pwId': {'value': st_id, 'type': 'string'},
'pwLabel': {'value': label, 'type': 'string'},
'pwDescription': {'value': description, 'type': 'string'},
'publication': {'value': lorefs, 'type': 'list'},
'goTerm': {'value': goterm, 'type': 'string'},
'inputs': {'value': lo_hasinput, 'type': 'list'},
'outputs': {'value': lo_hasoutput, 'type': 'list'},
'mods': {'value': lo_hasmod, 'type': 'list'},
'isPartOf': {'value': lo_ispartof, 'type': 'list'}})
pathways.append(pathway)
b = dict({'bindings': pathways})
results = dict({'results': b})
return results
def get_modprot_data_from_reactome(self, filename):
"""
This function creates a JSON representation of the Reactome data from a precise csv export
this emulates the results of the wikipathways query so common code can be used
The form of the csv file for a modified protein is:
species_code,entity_code,stableId,name,uniprot,[part;part],None
:param filename:
:return:
"""
if not os.path.isfile(filename):
print('{0} not found aborting ...'.format(filename))
return None
# set up global dictionaries for external ontologies
exter_data = extract_external_data.ExtractExternalData('psimod')
exter_data.populate_data()
global_variables.set_psimod(exter_data.get_data())
exter_data = extract_external_data.ExtractExternalData('PRO')
exter_data.populate_data()
global_variables.set_prodata(exter_data.get_data())
f = open(filename, 'r')
lines = f.readlines()
f.close()
entities = []
for line in lines:
variables = line.split(',')
if len(variables) != 8:
print('A line in the input csv file for a modified protein expects 8 comma separated entries')
print('species_code,entity_code,type,stableId,name,uniprot,[part;part],'
'endelement')
print('Re run WikidataExport to create an accurate file')
return None
else:
species, entitytype, res_type, st_id, label, protein, haspart, endelement = line.split(',')
# leave out proteins without modifications specified
if haspart == '[]':
continue
lo_haspart = self.parse_list_references(haspart)
label_parts = label.split(' ')
if res_type == 'P':
description = '{0} protein phosphorlyated'.format(label_parts[0])
no_parts = len(label_parts)
if no_parts > 2:
description = description + ' at '
for i in range(1,no_parts-1):
description = description + label_parts[i]
if i < no_parts-2:
description = description + ' '
else:
no_parts = len(label_parts)
if no_parts < 2:
description = '{0} from reactome'.format(label_parts[0])
else:
description = '{1} replaces {0}'.format(label_parts[0], label_parts[no_parts-1])
entity = dict({'pwId': {'value': st_id, 'type': 'string'},
'pwLabel': {'value': label, 'type': 'string'},
'pwDescription': {'value': description, 'type': 'string'},
'protein':{'value': protein, 'type': 'string'},
'hasPart': {'value': lo_haspart, 'type': 'list'},
'entitytype': entitytype})
entities.append(entity)
b = dict({'bindings': entities})
results = dict({'results': b})
return results