-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathmodel.py
197 lines (159 loc) · 7.95 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#!/usr/bin/python2.7
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
import copy
import numpy as np
from loguru import logger
class MS_TCN2(nn.Module):
MS_TCB def __init__(self, num_layers_PG, num_layers_R, num_R, num_f_maps, dim, num_classes):
super(MS_TCN2, self).__init__()
self.PG = Prediction_Generation(num_layers_PG, num_f_maps, dim, num_classes)
self.Rs = nn.ModuleList([copy.deepcopy(Refinement(num_layers_R, num_f_maps, num_classes, num_classes)) for s in range(num_R)])
def forward(self, x):
out = self.PG(x)
outputs = out.unsqueeze(0)
for R in self.Rs:
out = R(F.softmax(out, dim=1))
outputs = torch.cat((outputs, out.unsqueeze(0)), dim=0)
return outputs
class Prediction_Generation(nn.Module):
def __init__(self, num_layers, num_f_maps, dim, num_classes):
super(Prediction_Generation, self).__init__()
self.num_layers = num_layers
self.conv_1x1_in = nn.Conv1d(dim, num_f_maps, 1)
self.conv_dilated_1 = nn.ModuleList((
nn.Conv1d(num_f_maps, num_f_maps, 3, padding=2**(num_layers-1-i), dilation=2**(num_layers-1-i))
for i in range(num_layers)
))
self.conv_dilated_2 = nn.ModuleList((
nn.Conv1d(num_f_maps, num_f_maps, 3, padding=2**i, dilation=2**i)
for i in range(num_layers)
))
self.conv_fusion = nn.ModuleList((
nn.Conv1d(2*num_f_maps, num_f_maps, 1)
for i in range(num_layers)
))
self.dropout = nn.Dropout()
self.conv_out = nn.Conv1d(num_f_maps, num_classes, 1)
def forward(self, x):
f = self.conv_1x1_in(x)
for i in range(self.num_layers):
f_in = f
f = self.conv_fusion[i](torch.cat([self.conv_dilated_1[i](f), self.conv_dilated_2[i](f)], 1))
f = F.relu(f)
f = self.dropout(f)
f = f + f_in
out = self.conv_out(f)
return out
class Refinement(nn.Module):
def __init__(self, num_layers, num_f_maps, dim, num_classes):
super(Refinement, self).__init__()
self.conv_1x1 = nn.Conv1d(dim, num_f_maps, 1)
self.layers = nn.ModuleList([copy.deepcopy(DilatedResidualLayer(2**i, num_f_maps, num_f_maps)) for i in range(num_layers)])
self.conv_out = nn.Conv1d(num_f_maps, num_classes, 1)
def forward(self, x):
out = self.conv_1x1(x)
for layer in self.layers:
out = layer(out)
out = self.conv_out(out)
return out
class MS_TCN(nn.Module):
def __init__(self, num_stages, num_layers, num_f_maps, dim, num_classes):
super(MS_TCN, self).__init__()
self.stage1 = SS_TCN(num_layers, num_f_maps, dim, num_classes)
self.stages = nn.ModuleList([copy.deepcopy(SS_TCN(num_layers, num_f_maps, num_classes, num_classes)) for s in range(num_stages-1)])
def forward(self, x, mask):
out = self.stage1(x, mask)
outputs = out.unsqueeze(0)
for s in self.stages:
out = s(F.softmax(out, dim=1) * mask[:, 0:1, :], mask)
outputs = torch.cat((outputs, out.unsqueeze(0)), dim=0)
return outputs
class SS_TCN(nn.Module):
def __init__(self, num_layers, num_f_maps, dim, num_classes):
super(SS_TCN, self).__init__()
self.conv_1x1 = nn.Conv1d(dim, num_f_maps, 1)
self.layers = nn.ModuleList([copy.deepcopy(DilatedResidualLayer(2 ** i, num_f_maps, num_f_maps)) for i in range(num_layers)])
self.conv_out = nn.Conv1d(num_f_maps, num_classes, 1)
def forward(self, x, mask):
out = self.conv_1x1(x)
for layer in self.layers:
out = layer(out, mask)
out = self.conv_out(out) * mask[:, 0:1, :]
return out
class DilatedResidualLayer(nn.Module):
def __init__(self, dilation, in_channels, out_channels):
super(DilatedResidualLayer, self).__init__()
self.conv_dilated = nn.Conv1d(in_channels, out_channels, 3, padding=dilation, dilation=dilation)
self.conv_1x1 = nn.Conv1d(out_channels, out_channels, 1)
self.dropout = nn.Dropout()
def forward(self, x):
out = F.relu(self.conv_dilated(x))
out = self.conv_1x1(out)
out = self.dropout(out)
return x + out
class Trainer:
def __init__(self, num_layers_PG, num_layers_R, num_R, num_f_maps, dim, num_classes, dataset, split):
self.model = MS_TCN2(num_layers_PG, num_layers_R, num_R, num_f_maps, dim, num_classes)
self.ce = nn.CrossEntropyLoss(ignore_index=-100)
self.mse = nn.MSELoss(reduction='none')
self.num_classes = num_classes
logger.add('logs/' + dataset + "_" + split + "_{time}.log")
logger.add(sys.stdout, colorize=True, format="{message}")
def train(self, save_dir, batch_gen, num_epochs, batch_size, learning_rate, device):
self.model.train()
self.model.to(device)
optimizer = optim.Adam(self.model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
epoch_loss = 0
correct = 0
total = 0
while batch_gen.has_next():
batch_input, batch_target, mask = batch_gen.next_batch(batch_size)
batch_input, batch_target, mask = batch_input.to(device), batch_target.to(device), mask.to(device)
optimizer.zero_grad()
predictions = self.model(batch_input)
loss = 0
for p in predictions:
loss += self.ce(p.transpose(2, 1).contiguous().view(-1, self.num_classes), batch_target.view(-1))
loss += 0.15*torch.mean(torch.clamp(self.mse(F.log_softmax(p[:, :, 1:], dim=1), F.log_softmax(p.detach()[:, :, :-1], dim=1)), min=0, max=16)*mask[:, :, 1:])
epoch_loss += loss.item()
loss.backward()
optimizer.step()
_, predicted = torch.max(predictions[-1].data, 1)
correct += ((predicted == batch_target).float()*mask[:, 0, :].squeeze(1)).sum().item()
total += torch.sum(mask[:, 0, :]).item()
batch_gen.reset()
torch.save(self.model.state_dict(), save_dir + "/epoch-" + str(epoch + 1) + ".model")
torch.save(optimizer.state_dict(), save_dir + "/epoch-" + str(epoch + 1) + ".opt")
logger.info("[epoch %d]: epoch loss = %f, acc = %f" % (epoch + 1, epoch_loss / len(batch_gen.list_of_examples),
float(correct)/total))
def predict(self, model_dir, results_dir, features_path, vid_list_file, epoch, actions_dict, device, sample_rate):
self.model.eval()
with torch.no_grad():
self.model.to(device)
self.model.load_state_dict(torch.load(model_dir + "/epoch-" + str(epoch) + ".model"))
file_ptr = open(vid_list_file, 'r')
list_of_vids = file_ptr.read().split('\n')[:-1]
file_ptr.close()
for vid in list_of_vids:
#print vid
features = np.load(features_path + vid.split('.')[0] + '.npy')
features = features[:, ::sample_rate]
input_x = torch.tensor(features, dtype=torch.float)
input_x.unsqueeze_(0)
input_x = input_x.to(device)
predictions = self.model(input_x)
_, predicted = torch.max(predictions[-1].data, 1)
predicted = predicted.squeeze()
recognition = []
for i in range(len(predicted)):
recognition = np.concatenate((recognition, [list(actions_dict.keys())[list(actions_dict.values()).index(predicted[i].item())]]*sample_rate))
f_name = vid.split('/')[-1].split('.')[0]
f_ptr = open(results_dir + "/" + f_name, "w")
f_ptr.write("### Frame level recognition: ###\n")
f_ptr.write(' '.join(recognition))
f_ptr.close()