-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
151 lines (127 loc) · 5.67 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from core import console, setup_console_logging
with console.status('importing modules'):
import torch
import numpy as np
from rich import box
from rich.table import Table
from time import time
from typing import Annotated
from argparse import ArgumentParser
from core import globals
from core.datasets.loader import DatasetLoader
from core.args.utils import print_args, create_arguments, strip_kwargs, ArgInfo
from core.args.formatter import ArgumentDefaultsRichHelpFormatter
from core.loggers.logger import Logger
from core.methods.base import NodeClassification
from core.methods.registry import supported_methods
from core.utils import confidence_interval
from torch_geometric import seed_everything
def run(seed: Annotated[int, ArgInfo(help='initial random seed')] = 12345,
repeats: Annotated[int, ArgInfo(help='number of times the experiment is repeated')] = 1,
log_trainer: Annotated[bool, ArgInfo(help='log all training steps')] = False,
debug: Annotated[bool, ArgInfo(help='enable global debug mode')] = False,
**kwargs
):
seed_everything(seed)
### setup debug mode ###
if debug:
globals['debug'] = True
console.log_level = console.DEBUG
log_trainer = True
kwargs['logger'] = 'wandb'
kwargs['log_trainer'] = True
kwargs['project'] += '-debug'
console.debug('debug mode enabled')
console.debug(f'wandb logger is active for project {kwargs["project"]}')
### setup logger ###
config = {**kwargs, 'seed': seed, 'repeats': repeats}
logger_args = strip_kwargs(Logger, kwargs)
logger = Logger(config=config, **logger_args)
del kwargs['logger']
with console.status('loading dataset'):
loader_args = strip_kwargs(DatasetLoader, kwargs)
data = DatasetLoader(**loader_args).load(verbose=kwargs['verbose'])
### initiallize method ###
num_classes = data.y.max().item() + 1
Method = supported_methods[kwargs['method']][kwargs['level']]
method_args = strip_kwargs(Method, kwargs)
method_args['logger'] = logger if log_trainer else None
method: NodeClassification = Method(num_classes=num_classes, **method_args)
### run experiment ###
run_metrics = {}
for iteration in range(repeats):
start_time = time()
metrics = method.run(data)
end_time = time()
duration = end_time - start_time
metrics['duration'] = duration
### process results ###
for metric, value in metrics.items():
if torch.is_tensor(value):
value = value.item()
run_metrics[metric] = run_metrics.get(metric, []) + [value]
### print results ###
table = Table(title=f'run {iteration + 1}: {duration:.2f} s', box=box.HORIZONTALS)
table.add_column('metric')
table.add_column('last', style="cyan")
table.add_column('mean', style="cyan")
table.add_row('test/acc', f'{run_metrics["test/acc"][-1]:.2f}', f'{np.mean(run_metrics["test/acc"]):.2f}')
console.info(table)
console.print()
### reset method's parameters for the next run ###
method.reset()
summary = {}
for metric, values in run_metrics.items():
summary[metric + '_mean'] = np.mean(values)
summary[metric + '_std'] = np.std(values)
summary[metric + '_ci'] = confidence_interval(values, size=1000, ci=95, seed=seed)
if torch.cuda.is_available():
gpu_mem = torch.cuda.max_memory_allocated() / 1024 ** 3
summary['gpu_mem'] = gpu_mem
logger.log_summary(summary)
def main():
setup_console_logging()
init_parser = ArgumentParser(add_help=False, conflict_handler='resolve')
method_subparser = init_parser.add_subparsers(dest='method', required=True, title='algorithm')
for method_name, levels in supported_methods.items():
method_parser = method_subparser.add_parser(
name=method_name,
# help=method_class.__doc__,
formatter_class=ArgumentDefaultsRichHelpFormatter
)
level_subparser = method_parser.add_subparsers(dest='level', required=True, title='privacy level')
for level_name, method_class in levels.items():
level_parser = level_subparser.add_parser(
name=level_name,
help=f'privacy level {level_name}',
formatter_class=ArgumentDefaultsRichHelpFormatter
)
# dataset args
group_dataset = level_parser.add_argument_group('dataset arguments')
create_arguments(DatasetLoader, group_dataset)
# method args
group_method = level_parser.add_argument_group('method arguments')
create_arguments(method_class, group_method)
# experiment args
group_expr = level_parser.add_argument_group('experiment arguments')
create_arguments(run, group_expr)
create_arguments(Logger, group_expr)
parser = ArgumentParser(parents=[init_parser], formatter_class=ArgumentDefaultsRichHelpFormatter)
kwargs = vars(parser.parse_args())
print_args(kwargs, num_cols=2)
try:
start = time()
run(**kwargs)
end = time()
console.info(f'\nTotal running time: {(end - start):.2f} seconds.')
except KeyboardInterrupt:
print('\n')
console.warning('Graceful Shutdown')
except RuntimeError:
raise
finally:
if torch.cuda.is_available():
gpu_mem = torch.cuda.max_memory_allocated() / 1024 ** 3
console.info(f'Max GPU memory used = {gpu_mem:.2f} GB\n')
if __name__ == '__main__':
main()