Delimiter | Delimiters | Example | Result | Support |
---|---|---|---|---|
No delimiters | str |
\sqrt{3x-1}+(1+x)^2 |
\sqrt{3x-1}+(1+x)^2 | no |
Bracket without backslash | [str] |
[\sqrt{3x-1}+(1+x)^2] |
[\sqrt{3x-1}+(1+x)^2] | no |
Single backslash with bracket | \[str\] |
\[\sqrt{3x-1}+(1+x)^2\] |
[\sqrt{3x-1}+(1+x)^2] | yes |
Double backslash with bracket | \\[str\\] |
\\[\sqrt{3x-1}+(1+x)^2\\] |
\[\sqrt{3x-1}+(1+x)^2\] | no |
Parentheses without backslash | (str) |
(\sqrt{3x-1}+(1+x)^2) |
(\sqrt{3x-1}+(1+x)^2) | no |
Single backslash with parentheses | \(str\) |
\(\sqrt{3x-1}+(1+x)^2\) |
(\sqrt{3x-1}+(1+x)^2) | yes |
Double backslash with parentheses | \\(str\\) |
\\(\sqrt{3x-1}+(1+x)^2\\) |
\(\sqrt{3x-1}+(1+x)^2\) | no |
Single dollar sign | $str$ |
$\sqrt{3x-1}+(1+x)^2$ |
yes | |
Double dollar sign | $$str$$ |
$$\sqrt{3x-1}+(1+x)^2$$ |
yes |
-
\(\)
() -
$$
$$ -
\[\]
[] -
$$$$
$$$$
-
\(a\)
(a) -
$a$
$a$ -
\[a\]
[a] -
$$a$$
$$a$$
-
\(a\)
(a)\(b\)
(b) -
$a$
$a$ $b$
$b$ -
\[a\]
[a]\[b\]
[b] -
$$a$$
$$a$$ $$b$$
$$b$$
\(x_i = x_\gamma\)
(x_i = x_\gamma)
\(
x_i = x_\gamma
\)
( x_i = x_\gamma )
\[x_i = x_\gamma\]
[x_i = x_\gamma]
\[
x_i = x_\gamma
\]
[ x_i = x_\gamma ]
$x_i = x_\gamma$
$
x_i = x_\gamma
$
$ x_i = x_\gamma $
$$x_i = x_\gamma$$
$$
x_i = x_\gamma
$$
\begin{align}
x_i = x_\gamma
\end{align}
\begin{align} x_i = x_\gamma \end{align}
-
\$6.20
and\$0.5
- $6.20 and $0.5 -
$4.40
- $4.40 -
\\$1 \\$2
- \$1 \$2
When
\begin{align} \dot{x} & = \sigma(y-x) \ \dot{y} & = \rho x - y - xz \ \dot{z} & = -\beta z + xy \end{align}
[ \left( \sum_{k=1}^n a_k b_k \right)^{!!2} \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) ]
[ \mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \ \end{vmatrix} ]
[P(E) = {n \choose k} p^k (1-p)^{ n-k} ]
[ \frac{1}{(\sqrt{\phi \sqrt{5}}-\phi) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } ]
[
1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})},
\quad\quad \text{for
\begin{align} \nabla \times \vec{\mathbf{B}} -, \frac1c, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \ \nabla \times \vec{\mathbf{E}}, +, \frac1c, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{align}
Input: $\mathbf{X}i = (X{1i}, \ldots, X_{ki})$
Output:
Analysis:
$$Pr(h(\mathbf{X}) \le b) \approx \frac{1}{N} \sum_{i=1}^N I(h(\mathbf{X}i) \le b)$$ $$E(h(\mathbf{X})) \approx \frac{1}{N} \sum{i=1}^N h(\mathbf{X}_i)$$
Finally, while display equations look good for a page of samples, the ability to mix math and text in a paragraph is also important. This expression (\sqrt{3x-1}+(1+x)^2) is an example of an inline equation. As you see, MathJax equations can be used this way as well, without unduly disturbing the spacing between lines.
-
$E = mc^2$ -
( A_i = B_i + C_i \sum_{k=0}^{i} D_k E^k )
-
\begin{eqnarray} A_i &=& B_i + C_i \sum_{k=0}^{i} D_k E^k \ F_i &=& \int_{-\infty}^{x_i} f(x) dx \end{eqnarray}
-
$\frac{w_x}{\sum_z x_z}$ -
$\frac{w}{\sum_{z} x_z}$ -
$x_\gamma = x_i$ -
$x_i = x_\gamma$
Cost function of logistic regression (revision):
For Neural Networks, it is:
$$ J(\Theta) = - \frac{1}{m} \sum_{i=1}^m \sum_{k=1}^K \left[y^{(i)}k \log ((h\Theta (x^{(i)}))k) + (1 - y^{(i)}k)\log (1 - (h\Theta(x^{(i)}))k)\right] + \frac{\lambda}{2m}\sum{l=1}^{L-1} \sum{p=1}^{s_l} \sum_{n=1}^{s_{l+1}} ( \Theta_{n,p}^{(l)})^2 $$
Commutative diagrams using \array
or \newcommand
:
-
$\textbf{bold}$ -
$\textit{italic}$ -
$\mathtt{Typewriter}$ -
$\mathscr{script}$ -
$\mathcal{CALLIGRAPHIC}$ -
$\mathfrak{Fraktur}$
-
$\mathtip{math}{tip}$ -
$\toggle{math1}{math2}\endtoggle$ -
$\circeq \lesseqqgtr$ -
$ \bbox[red]{x+y} \bbox[2pt]{x+1} \bbox[red,2pt]{x+1} \bbox[5px, border: 2px solid red]{x+1} $
-
$\boldsymbol{A}$ -
$\bra{1}$ -
$$ \begin{prooftree} \AxiomC{} \RightLabel{Hyp$^{1}$} \UnaryInfC{$P$} \AXC{$P\to Q$} \RL{$\to_E$} \BIC{$Q^2$} \AXC{$Q\to R$} \RL{$\to_E$} \BIC{$R$} \AXC{$Q$} \RL{Rit$^2$} \UIC{$Q$} \RL{$\wedge_I$} \BIC{$Q\wedge R$} \RL{$\to_I$$^1$} \UIC{$P\to Q\wedge R$} \end{prooftree} $$
-
$\cancel{math}$ -
$ \require{centernot} \begin{array}{c} A \not\longrightarrow B\ A \centernot\longrightarrow B \end{array} $
-
$\color{red}{x} \color{black}+ \color{blue}{y}$ -
$ \require{colortbl} \begin{array}{|l|c|} \rowcolor[gray]{.5}\columncolor{red} one & two\ \rowcolor{lightblue} three & four\\hline five & six \ \rowcolor{magenta}seven & \cellcolor{green}eight \end{array} $
-
$ \require{empheq} \empheqbiglbrack $
-
$ \enclose{circle}[mathcolor="red"]{x} \enclose{circle}[mathcolor="red"]{\color{black}{x}} \enclose{circle,box}{x} \enclose{circle}{\enclose{box}{x}} $
-
$ \require{gensymb} \celsius \degree \micro \ohm \perthousand $
-
$ \ce{C6H5-CHO} \ce{$A$ ->[\ce{+H2O}]
$B$ } \ce{SO4^2- + Ba^2+ -> BaSO4 v} $ -
$ \require{physics} \ket{\psi}=\frac{1}{\sqrt{2}}(\ket{00}+\ket{11}) $
-
$ \unicode{65} % the character 'A' \unicode{x41} % the character 'A' \unicode[.55,0.05]{x22D6} % less-than with dot, with height .55em and depth 0.05em \unicode[.55,0.05][Geramond]{x22D6} % same taken from Geramond font \unicode[Garamond]{x22D6} % same, but with default height, depth of .8em,.2em $
-
$ \require{upgreek} \upalpha \upbeta \upchi \updelta $
-
$\verb|\sqrt{x}|$