-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluation_metrics.py
267 lines (214 loc) · 8.82 KB
/
evaluation_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
"""
Refactored from
https://github.com/stevenygd/PointFlow/blob/master/metrics/evaluation_metrics.py
Replaced Chamfer and EMD implementations with the more efficients one from
pytorch3d and geomloss respectively.
"""
import torch
import tqdm
import geomloss
import warnings
import numpy as np
from scipy.stats import entropy
from sklearn.neighbors import NearestNeighbors
from numpy.linalg import norm
from pytorch3d.loss import chamfer_distance
# Modified from original implementation to avoid compilation of CUDA kernels
def emd_approx(sample, ref):
return geomloss.SamplesLoss()(sample, ref)
def _pairwise_emd_cd_(sample_pcs, ref_pcs, batch_size):
print("computing Earth Mover and Chamfer distances")
n_sample = sample_pcs.shape[0]
n_ref = ref_pcs.shape[0]
all_cd = []
all_emd = []
iterator = range(n_sample)
for sample_b_start in tqdm.tqdm(iterator):
sample_batch = sample_pcs[sample_b_start]
cd_lst = []
emd_lst = []
for ref_b_start in range(0, n_ref, batch_size):
ref_b_end = min(n_ref, ref_b_start + batch_size)
ref_batch = ref_pcs[ref_b_start:ref_b_end]
batch_size_ref = ref_batch.size(0)
sample_batch_exp = sample_batch.view(1, -1, 3).expand(
batch_size_ref, -1, -1)
sample_batch_exp = sample_batch_exp.contiguous()
cd_lst.append(chamfer_distance(sample_batch_exp, ref_batch,
batch_reduction=None)[0].unsqueeze(0))
emd_batch = emd_approx(sample_batch_exp, ref_batch)
emd_lst.append(emd_batch.view(1, -1))
cd_lst = torch.cat(cd_lst, dim=-1)
emd_lst = torch.cat(emd_lst, dim=-1)
all_cd.append(cd_lst)
all_emd.append(emd_lst)
all_cd = torch.cat(all_cd, dim=0) # n_sample, n_ref
all_emd = torch.cat(all_emd, dim=0) # n_sample, n_ref
return all_cd, all_emd
# Adapted from
# https://github.com/xuqiantong/GAN-Metrics/blob/master/framework/metric.py
def knn(m_xx, m_xy, m_yy, k, sqrt=False):
n0 = m_xx.size(0)
n1 = m_yy.size(0)
label = torch.cat((torch.ones(n0), torch.zeros(n1))).to(m_xx)
mat = torch.cat((torch.cat((m_xx, m_xy), 1),
torch.cat((m_xy.transpose(0, 1), m_yy), 1)), 0)
if sqrt:
mat = mat.abs().sqrt()
val, idx = (mat + torch.diag(
float('inf') * torch.ones(n0 + n1).to(m_xx))).topk(k, 0, False)
count = torch.zeros(n0 + n1).to(m_xx)
for i in range(0, k):
count = count + label.index_select(0, idx[i])
pred = torch.ge(count, (float(k) / 2) *
torch.ones(n0 + n1).to(m_xx)).float()
s = {
'tp': (pred * label).sum(),
'fp': (pred * (1 - label)).sum(),
'fn': ((1 - pred) * label).sum(),
'tn': ((1 - pred) * (1 - label)).sum(),
}
s.update({
'precision': s['tp'] / (s['tp'] + s['fp'] + 1e-10),
'recall': s['tp'] / (s['tp'] + s['fn'] + 1e-10),
'acc_t': s['tp'] / (s['tp'] + s['fn'] + 1e-10),
'acc_f': s['tn'] / (s['tn'] + s['fp'] + 1e-10),
'acc': torch.eq(label, pred).float().mean(),
})
return s
def lgan_mmd_cov(all_dist):
n_sample, n_ref = all_dist.size(0), all_dist.size(1)
min_val_fromsmp, min_idx = torch.min(all_dist, dim=1)
min_val, _ = torch.min(all_dist, dim=0)
mmd = min_val.mean()
mmd_smp = min_val_fromsmp.mean()
cov = float(min_idx.unique().view(-1).size(0)) / float(n_ref)
cov = torch.tensor(cov).to(all_dist)
return {
'lgan_mmd': mmd,
'lgan_cov': cov,
'lgan_mmd_smp': mmd_smp,
}
def compute_all_metrics(sample_pcs, ref_pcs, batch_size):
results = {}
m_rs_cd, m_rs_emd = _pairwise_emd_cd_(sample_pcs, ref_pcs, batch_size)
res_cd = lgan_mmd_cov(m_rs_cd.t())
results.update({
"%s-CD" % k: v for k, v in res_cd.items()
})
res_emd = lgan_mmd_cov(m_rs_emd.t())
results.update({
"%s-EMD" % k: v for k, v in res_emd.items()
})
m_rr_cd, m_rr_emd = _pairwise_emd_cd_(ref_pcs, ref_pcs, batch_size)
m_ss_cd, m_ss_emd = _pairwise_emd_cd_(sample_pcs, sample_pcs, batch_size)
# 1-NN results
one_nn_cd_res = knn(m_rr_cd, m_rs_cd, m_ss_cd, 1, sqrt=False)
results.update({
"1-NN-CD-%s" % k: v for k, v in one_nn_cd_res.items() if 'acc' in k
})
one_nn_emd_res = knn(m_rr_emd, m_rs_emd, m_ss_emd, 1, sqrt=False)
results.update({
"1-NN-EMD-%s" % k: v for k, v in one_nn_emd_res.items() if 'acc' in k
})
return results
#######################################################
# JSD : from https://github.com/optas/latent_3d_points
#######################################################
def unit_cube_grid_point_cloud(resolution, clip_sphere=False):
"""Returns the center coordinates of each cell of a 3D grid with
resolution^3 cells, that is placed in the unit-cube.
If clip_sphere it True it drops the "corner" cells that
lie outside the unit-sphere.
"""
grid = np.ndarray((resolution, resolution, resolution, 3), np.float32)
spacing = 1.0 / float(resolution - 1)
for i in range(resolution):
for j in range(resolution):
for k in range(resolution):
grid[i, j, k, 0] = i * spacing - 0.5
grid[i, j, k, 1] = j * spacing - 0.5
grid[i, j, k, 2] = k * spacing - 0.5
if clip_sphere:
grid = grid.reshape(-1, 3)
grid = grid[norm(grid, axis=1) <= 0.5]
return grid, spacing
def jsd_between_point_cloud_sets(sample_pcs, ref_pcs, resolution=28):
"""Computes the JSD between two sets of point-clouds,
as introduced in the paper
```Learning Representations And Generative Models For 3D Point Clouds```.
Args:
sample_pcs: (np.ndarray S1xR2x3) S1 point-clouds, each of R1 points.
ref_pcs: (np.ndarray S2xR2x3) S2 point-clouds, each of R2 points.
resolution: (int) grid-resolution. Affects granularity of measurements.
"""
in_unit_sphere = True
sample_grid_var = entropy_of_occupancy_grid(sample_pcs,
resolution, in_unit_sphere)[1]
ref_grid_var = entropy_of_occupancy_grid(ref_pcs,
resolution, in_unit_sphere)[1]
return jensen_shannon_divergence(sample_grid_var, ref_grid_var)
def entropy_of_occupancy_grid(pclouds, grid_resolution,
in_sphere=False, verbose=False):
"""Given a collection of point-clouds, estimate the entropy of the random
variables corresponding to occupancy-grid activation patterns.
Inputs:
pclouds: (numpy array) #point-clouds x points per point-cloud x 3
grid_resolution (int) size of occupancy grid that will be used.
"""
epsilon = 10e-4
bound = 0.5 + epsilon
if abs(np.max(pclouds)) > bound or abs(np.min(pclouds)) > bound:
if verbose:
warnings.warn('Point-clouds are not in unit cube.')
if in_sphere and np.max(np.sqrt(np.sum(pclouds ** 2, axis=2))) > bound:
if verbose:
warnings.warn('Point-clouds are not in unit sphere.')
grid_coordinates, _ = unit_cube_grid_point_cloud(grid_resolution, in_sphere)
grid_coordinates = grid_coordinates.reshape(-1, 3)
grid_counters = np.zeros(len(grid_coordinates))
grid_bernoulli_rvars = np.zeros(len(grid_coordinates))
nn = NearestNeighbors(n_neighbors=1).fit(grid_coordinates)
for pc in pclouds:
_, indices = nn.kneighbors(pc)
indices = np.squeeze(indices)
for i in indices:
grid_counters[i] += 1
indices = np.unique(indices)
for i in indices:
grid_bernoulli_rvars[i] += 1
acc_entropy = 0.0
n = float(len(pclouds))
for g in grid_bernoulli_rvars:
if g > 0:
p = float(g) / n
acc_entropy += entropy([p, 1.0 - p])
return acc_entropy / len(grid_counters), grid_counters
def jensen_shannon_divergence(p_big, q_big):
if np.any(p_big < 0) or np.any(q_big < 0):
raise ValueError('Negative values.')
if len(p_big) != len(q_big):
raise ValueError('Non equal size.')
p_ = p_big / np.sum(p_big) # Ensure probabilities.
q_ = q_big / np.sum(q_big)
e1 = entropy(p_, base=2)
e2 = entropy(q_, base=2)
e_sum = entropy((p_ + q_) / 2.0, base=2)
res = e_sum - ((e1 + e2) / 2.0)
res2 = _jsdiv(p_, q_)
if not np.allclose(res, res2, atol=10e-5, rtol=0):
warnings.warn('Numerical values of two JSD methods don\'t agree.')
return res
def _jsdiv(p_big, q_big):
"""another way of computing JSD"""
def _kldiv(a_big, b_big):
a = a_big.copy()
b = b_big.copy()
idx = np.logical_and(a > 0, b > 0)
a = a[idx]
b = b[idx]
return np.sum([v for v in a * np.log2(a / b)])
p_ = p_big / np.sum(p_big)
q_ = q_big / np.sum(q_big)
mat = 0.5 * (p_ + q_)
return 0.5 * (_kldiv(p_, mat) + _kldiv(q_, mat))