forked from danielgordon10/re3-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathim_util.py
111 lines (106 loc) · 4.68 KB
/
im_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import cv2
import numpy as np
# @inputImage{ndarray HxWx3} Full input image.
# @bbox{ndarray or list 4x1} bbox to be cropped in x1,y1,x2,y2 format.
# @padScale{number} scalar representing amount of padding around image.
# padScale=1 will be exactly the bbox, padScale=2 will be 2x the input image.
# @outputSize{number} Size in pixels of output crop. Crop will be square and
# warped.
# @return{tuple(patch, outputBox)} the output patch and bounding box
# representing its coordinates.
def get_cropped_input(inputImage, bbox, padScale, outputSize):
bbox = np.array(bbox)
width = float(bbox[2] - bbox[0])
height = float(bbox[3] - bbox[1])
imShape = np.array(inputImage.shape)
if len(imShape) < 3:
inputImage = inputImage[:,:,np.newaxis]
xC = float(bbox[0] + bbox[2]) / 2
yC = float(bbox[1] + bbox[3]) / 2
boxOn = np.zeros(4)
boxOn[0] = float(xC - padScale * width / 2)
boxOn[1] = float(yC - padScale * height / 2)
boxOn[2] = float(xC + padScale * width / 2)
boxOn[3] = float(yC + padScale * height / 2)
outputBox = boxOn.copy()
boxOn = np.round(boxOn).astype(int)
boxOnWH = np.array([boxOn[2] - boxOn[0], boxOn[3] - boxOn[1]])
imagePatch = inputImage[max(boxOn[1], 0):min(boxOn[3], imShape[0]),
max(boxOn[0], 0):min(boxOn[2], imShape[1]), :]
boundedBox = np.clip(boxOn, 0, imShape[[1,0,1,0]])
boundedBoxWH = np.array([boundedBox[2] - boundedBox[0], boundedBox[3] - boundedBox[1]])
if imagePatch.shape[0] == 0 or imagePatch.shape[1] == 0:
patch = np.zeros((int(outputSize), int(outputSize), 3))
else:
patch = cv2.resize(imagePatch, (
max(1, int(np.round(outputSize * boundedBoxWH[0] / boxOnWH[0]))),
max(1, int(np.round(outputSize * boundedBoxWH[1] / boxOnWH[1])))))
if len(patch.shape) < 3:
patch = patch[:,:,np.newaxis]
patchShape = np.array(patch.shape)
pad = np.zeros(4, dtype=int)
pad[:2] = np.maximum(0, -boxOn[:2] * outputSize / boxOnWH)
pad[2:] = outputSize - (pad[:2] + patchShape[[1,0]])
if np.any(pad != 0):
if len(pad[pad < 0]) > 0:
patch = np.zeros((int(outputSize), int(outputSize), 3))
else:
patch = np.lib.pad(
patch,
((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)),
'constant', constant_values=0)
return patch, outputBox
def get_image_size(fname):
import struct, imghdr, re
'''Determine the image type of fhandle and return its size.
from draco'''
# Only a loop so we can break. Should never run more than once.
while True:
with open(fname, 'rb') as fhandle:
head = fhandle.read(32)
if len(head) != 32:
break
if imghdr.what(fname) == 'png':
check = struct.unpack('>i', head[4:8])[0]
if check != 0x0d0a1a0a:
break
width, height = struct.unpack('>ii', head[16:24])
elif imghdr.what(fname) == 'gif':
width, height = struct.unpack('<HH', head[6:10])
elif imghdr.what(fname) == 'jpeg':
try:
fhandle.seek(0) # Read 0xff next
size = 2
ftype = 0
while not 0xc0 <= ftype <= 0xcf:
fhandle.seek(size, 1)
byte = fhandle.read(1)
while ord(byte) == 0xff:
byte = fhandle.read(1)
ftype = ord(byte)
size = struct.unpack('>H', fhandle.read(2))[0] - 2
# We are at a SOFn block
fhandle.seek(1, 1) # Skip `precision' byte.
height, width = struct.unpack('>HH', fhandle.read(4))
except Exception: #IGNORE:W0703
break
elif imghdr.what(fname) == 'pgm':
header, width, height, maxval = re.search(
b"(^P5\s(?:\s*#.*[\r\n])*"
b"(\d+)\s(?:\s*#.*[\r\n])*"
b"(\d+)\s(?:\s*#.*[\r\n])*"
b"(\d+)\s(?:\s*#.*[\r\n]\s)*)", head).groups()
width = int(width)
height = int(height)
elif imghdr.what(fname) == 'bmp':
_, width, height, depth = re.search(
b"((\d+)\sx\s"
b"(\d+)\sx\s"
b"(\d+))", str).groups()
width = int(width)
height = int(height)
else:
break
return width, height
imShape = cv2.imread(fname).shape
return imShape[1], imShape[0]