-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathrun.sh
executable file
·35 lines (30 loc) · 1.12 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
data=$1
loss=$2
bs=48
pbs=600
data_dir="preprocessed-open-domain-qa-data"
if [ ${loss} = "hard-em" ]
then
tau=$3
output_dir="out/${data}-${loss}-${tau}"
else
output_dir="out/${data}-${loss}"
tau=0
fi
train_file="${data_dir}/${data}-train0.json"
for index in 1 2 3 ; do
train_file="${train_file},${data_dir}/${data}-train${index}.json"
done
dev_file="${data_dir}/${data}-dev.json"
test_file="${data_dir}/${data}-test.json"
python3 main.py --do_train --output_dir ${output_dir} \
--train_file ${train_file} --predict_file ${dev_file} \
--train_batch_size ${bs} --predict_batch_size ${pbs} --verbose --loss_type ${loss} --tau ${tau}
python3 main.py --do_predict --output_dir ${output_dir} \
--predict_file ${dev_file} \
--init_checkpoint ${output_dir}/best-model.pt \
--predict_batch_size ${pbs} --n_paragraphs "10,20,40,80" --prefix dev_
python3 main.py --do_predict --output_dir ${output_dir} \
--predict_file ${test_file} \
--init_checkpoint ${output_dir}/best-model.pt \
--predict_batch_size ${pbs} --n_paragraphs "10,20,40,80" --prefix test_