-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
137 lines (116 loc) · 4.42 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import argparse
import os
import random
import sys
import numpy as np
import pytorch_lightning as pl
import ruamel.yaml as yaml
import torch
from pytorch_lightning import Trainer
from pytorch_lightning import loggers as pl_loggers
from pytorch_lightning.callbacks import ModelCheckpoint
from datasets import (
JRDR,
get_test_loader,
get_train_transforms,
get_train_valid_loader,
get_valid_transforms,
)
from models import DerainCNN, DerainCNNModular
from utils import set_seed, validate
parser = argparse.ArgumentParser()
parser.add_argument("--id", type=str, default="default")
parser.add_argument("--logdir", type=str, default="logs/")
parser.add_argument("--epochs", type=int, default=300)
parser.add_argument("--input_size", type=int, default=256)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--dataset", type=str, default="JRDR")
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--channel_mul", type=int, default=16)
parser.add_argument("--depth", type=int, default=5)
parser.add_argument("--center_depth", type=int, default=4)
parser.add_argument("--attention_type", type=str, default="channel")
parser.add_argument("--reduction", type=int, default=16)
parser.add_argument("--lr", type=float, default=4e-4)
parser.add_argument("--gamma", type=float, default=0.8)
args = parser.parse_args()
device = "cuda" if (torch.cuda.is_available() and args.device == "cuda") else "cpu"
set_seed(args.seed)
input_size = args.input_size
train_transform = get_train_transforms(input_size)
valid_transform = get_valid_transforms(input_size)
if args.dataset == "JRDR":
dataset_dir = os.path.join("data", "JRDR")
test_dir = os.path.join("data", "JRDR")
train_data = JRDR(root=dataset_dir, transform=train_transform)
valid_data = JRDR(root=dataset_dir, transform=valid_transform)
test_data = JRDR(root=test_dir, split="test", transform=valid_transform)
else:
raise NotImplementedError(args.dataset)
train_loader, valid_loader = get_train_valid_loader(train_data, valid_data, show_sample=False)
test_loader = get_test_loader(test_data)
model = DerainCNNModular(
input_size=input_size,
channel_mul=args.channel_mul,
depth=args.depth,
center_depth=args.center_depth,
attention_type=args.attention_type,
reduction=args.reduction,
lr=args.lr,
gamma=args.gamma,
)
exp_id = os.path.join(args.dataset, args.id)
logdir = args.logdir
exp_log_dir = os.path.join(logdir, exp_id, str(args.seed))
os.makedirs(exp_log_dir, exist_ok=True)
print(f"Logging to {exp_log_dir}")
print(f"Checkpoint saved to {exp_log_dir}")
config_path = os.path.join(exp_log_dir, "configs.yaml")
command_args = dict(defaults=vars(args))
with open(config_path, "w") as f:
yaml.dump(command_args, f, default_flow_style=False)
script_path = os.path.join(exp_log_dir, "script.sh")
with open(script_path, "w") as f:
f.write("#!/bin/bash")
f.write("\n")
f.write("python ")
f.write(" ".join(sys.argv))
checkpoint_file = os.path.join(exp_log_dir, "latest_epoch.pth")
best_model_dir = os.path.join(exp_log_dir, "models")
best_model_file = "{valid/PSNR:.2f}"
report_file = os.path.join(exp_log_dir, "report.txt")
class SaveModelCallback(pl.Callback):
def on_train_end(self, trainer, pl_module):
torch.save(pl_module.state_dict(), checkpoint_file)
validate(pl_module, train_loader, "train", exp_log_dir)
checkpoint_callback = ModelCheckpoint(
period=1,
dirpath=best_model_dir,
filename=best_model_file,
verbose=True,
monitor="valid/PSNR",
mode="max",
)
early_stopping = pl.callbacks.EarlyStopping("valid/PSNR", 0.001, 10, True, "max")
profiler = pl.profiler.AdvancedProfiler(report_file)
callbacks = [SaveModelCallback(), checkpoint_callback, early_stopping]
tb_logger = pl_loggers.TensorBoardLogger(save_dir=logdir, name=exp_id, version=args.seed, log_graph=True)
epochs = args.epochs
trainer = Trainer(
gpus=1 if device == "cuda" else 0,
profiler=profiler,
callbacks=callbacks,
min_epochs=epochs,
max_epochs=epochs + 5,
progress_bar_refresh_rate=20,
weights_summary="top",
benchmark=True,
logger=tb_logger,
)
trainer.fit(model, train_loader, valid_loader)
final_checkpoint_file = os.path.join(exp_log_dir, "final_epoch.pth")
torch.save(model.state_dict(), final_checkpoint_file)
model.eval()
model = model.to(device)
df = validate(model, valid_loader, "valid", exp_log_dir)
df = validate(model, test_loader, "test", exp_log_dir)