-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_experiment.py
139 lines (117 loc) · 4.74 KB
/
run_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import argparse
import importlib
import os
import sys
import pytorch_lightning as pl
import ruamel.yaml as yaml
import torch
from pytorch_lightning import Trainer
from pytorch_lightning import loggers as pl_loggers
from pytorch_lightning.callbacks import ModelCheckpoint
from datasets import get_train_transforms, get_valid_transforms
from models import DerainCNNModular, FMMRNetModular
from utils import set_seed, validate
AVAILABLE_DATASETS = ["JRDR"]
def _import_class(module_and_class_name: str) -> type:
"""Import class from a module"""
module_name, class_name = module_and_class_name.rsplit(".", 1)
module = importlib.import_module(module_name)
class_ = getattr(module, class_name)
return class_
def save_experiment_details(logdir, args):
config_path = os.path.join(logdir, "configs.yaml")
command_args = dict(defaults=vars(args))
with open(config_path, "w") as f:
yaml.dump(command_args, f, default_flow_style=False)
script_path = os.path.join(logdir, "script.sh")
with open(script_path, "w") as f:
f.write("#!/bin/bash")
f.write("\n")
f.write("python ")
f.write(" ".join(sys.argv))
parser = argparse.ArgumentParser()
parser.add_argument("--id", type=str, default="default")
parser.add_argument("--logdir", type=str, default="logs/")
parser.add_argument("--epochs", type=int, default=300)
parser.add_argument("--input_size", type=int, default=256)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--data_dir", type=str, default="data")
parser.add_argument("--dataset", type=str, default="JRDR")
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--multiscale_kernels", type=str, default='1x3x5x7')
parser.add_argument("--channel_mul", type=int, default=16)
parser.add_argument("--depth", type=int, default=5)
parser.add_argument("--center_depth", type=int, default=4)
parser.add_argument("--attention_type", type=str, default="channel")
parser.add_argument("--reduction", type=int, default=16)
parser.add_argument("--lr", type=float, default=4e-4)
parser.add_argument("--gamma", type=float, default=0.8)
parser.add_argument("--act", type=str, default='ReLU')
args = parser.parse_args()
device = "cuda" if (torch.cuda.is_available() and args.device == "cuda") else "cpu"
args.multiscale_kernels = [int(kernel) for kernel in args.multiscale_kernels.split('x')]
print("Kernels: ", args.multiscale_kernels)
set_seed(args.seed)
input_size = args.input_size
train_transform = get_train_transforms(input_size)
valid_transform = get_valid_transforms(input_size)
assert args.dataset in AVAILABLE_DATASETS, f"Dataset {args.dataset} not found."
data_class = _import_class(f"datasets.{args.dataset}DataModule")
data = data_class(args.data_dir, train_transform=train_transform, valid_transform=valid_transform)
assert args.act in ['ELU', 'LeakyReLU', 'PReLU', 'ReLU', 'Tanh', 'Sigmoid', 'SELU']
args.act = getattr(torch.nn, args.act)
base = FMMRNetModular(
input_size=args.input_size,
channel_mul=args.channel_mul,
depth=args.depth,
center_depth=args.center_depth,
attention_type=args.attention_type,
reduction=args.reduction,
multiscale_kernels=args.multiscale_kernels,
act=args.act(),
)
model = DerainCNNModular(
model=base,
input_size=input_size,
lr=args.lr,
gamma=args.gamma,
)
exp_id = os.path.join(args.dataset, args.id)
exp_logdir = os.path.join(args.logdir, exp_id, f"version_{args.seed}")
os.makedirs(exp_logdir, exist_ok=True)
print(f"Logging to {exp_logdir}")
save_experiment_details(exp_logdir, args)
model_checkpoint_dir = os.path.join(exp_logdir, "models")
os.makedirs(model_checkpoint_dir, exist_ok=True)
best_model_file = "{epoch:03d}-{valid/PSNR:.2f}"
checkpoint_callback = ModelCheckpoint(
period=1,
dirpath=model_checkpoint_dir,
filename=best_model_file,
verbose=True,
monitor="valid/PSNR",
mode="max",
)
early_stopping = pl.callbacks.EarlyStopping("valid/PSNR", 0.001, 10, True, "max")
callbacks = [checkpoint_callback, early_stopping]
tb_logger = pl_loggers.TensorBoardLogger(save_dir=args.logdir, name=exp_id, version=args.seed)
epochs = args.epochs
trainer = Trainer(
gpus=1 if device == "cuda" else 0,
callbacks=callbacks,
min_epochs=epochs,
max_epochs=epochs + 5,
progress_bar_refresh_rate=20,
weights_summary="top",
benchmark=True,
logger=tb_logger,
check_val_every_n_epoch=50,
)
trainer.fit(model, datamodule=data)
final_checkpoint_file = os.path.join(model_checkpoint_dir, "final_epoch.pth")
torch.save(model.state_dict(), final_checkpoint_file)
model.eval()
model = model.to(device)
validate(model, data.train_dataloader(), "train", exp_logdir)
validate(model, data.val_dataloader(), "valid", exp_logdir)
validate(model, data.test_dataloader(), "test", exp_logdir)