forked from SwinTransformer/Video-Swin-Transformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract.py
216 lines (175 loc) · 7.39 KB
/
extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import argparse
import os
import os.path as osp
import mmcv
import torch
from mmcv import Config, DictAction
from mmcv.cnn import fuse_conv_bn
from mmcv.fileio.io import file_handlers
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import get_dist_info, init_dist, load_checkpoint
from mmcv.runner.fp16_utils import wrap_fp16_model
from mmaction.datasets import build_dataloader, build_dataset
from mmaction.models import build_model
from mmaction.utils import register_module_hooks
import h5py
def parse_args():
parser = argparse.ArgumentParser(
description='MMAction2 test (and eval) a model')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument('output', help='output feature path')
parser.add_argument('--dataset', help='dataset', default='')
parser.add_argument(
'--fuse-conv-bn',
action='store_true',
help='Whether to fuse conv and bn, this will slightly increase'
'the inference speed')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
default={},
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. For example, '
"'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'")
parser.add_argument(
'--average-clips',
choices=['score', 'prob', None],
default=None,
help='average type when averaging test clips')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def turn_off_pretrained(cfg):
# recursively find all pretrained in the model config,
# and set them None to avoid redundant pretrain steps for testing
if 'pretrained' in cfg:
cfg.pretrained = None
# recursively turn off pretrained value
for sub_cfg in cfg.values():
if isinstance(sub_cfg, dict):
turn_off_pretrained(sub_cfg)
def get_key_parser(dataset=''):
default = lambda f: osp.splitext(osp.basename(f))[0]
if dataset == 'webvid':
return lambda f: os.sep.join(osp.splitext(f)[0].split(os.sep)[-2:])
if dataset == 'anetqa':
return lambda f: osp.splitext(osp.basename(f))[0][2:]
if len(dataset):
print(f"Warning: dataset `{dataset}` is not supported. Use basenames without extension as feature keys")
else:
print("Warning: No dataset name is given. Use basenames without extension as feature keys")
return default
def single_gpu_extract(model, data_loader, output, key_parser):
"""Extract features with a single gpu.
This method extracts features with a single gpu and displays test progress bar.
Args:
model (nn.Module): Model to be tested.
data_loader (nn.Dataloader): Pytorch data loader.
"""
model.eval()
dataset = data_loader.dataset
prog_bar = mmcv.ProgressBar(len(dataset))
with h5py.File(output, 'a') as fd:
for data in data_loader:
vid_key = key_parser(data['img_metas'].data[0][0]['filename'])
if vid_key not in fd:
del data['img_metas']
with torch.no_grad():
result = model(return_loss=False, **data)
fd.create_dataset(vid_key, data=result.squeeze(0))
# Assume result has the same length of batch_size
# refer to https://github.com/open-mmlab/mmcv/issues/985
prog_bar.update()
def inference_pytorch(args, cfg, distributed):
"""Get predictions by pytorch models.
"""
if args.average_clips is not None:
# You can set average_clips during testing, it will override the
# original setting
if cfg.model.get('test_cfg') is None and cfg.get('test_cfg') is None:
cfg.model.setdefault('test_cfg',
dict(average_clips=args.average_clips))
else:
if cfg.model.get('test_cfg') is not None:
cfg.model.test_cfg.average_clips = args.average_clips
else:
cfg.test_cfg.average_clips = args.average_clips
# remove redundant pretrain steps for testing
turn_off_pretrained(cfg.model)
# ========== build the model and load checkpoint ========== #
model = build_model(
cfg.model, train_cfg=None, test_cfg=cfg.get('test_cfg'))
if len(cfg.module_hooks) > 0:
register_module_hooks(model, cfg.module_hooks)
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
wrap_fp16_model(model)
load_checkpoint(model, args.checkpoint, map_location='cpu')
if args.fuse_conv_bn:
model = fuse_conv_bn(model)
# ========== build the dataset ========== #
key_parser = get_key_parser(args.dataset)
if osp.isfile(args.output): # resuming from incomplete trial
vidlist = open(cfg.data.test.ann_file).read().splitlines()
all_len = len(vidlist)
with h5py.File(args.output, 'r') as f:
vidlist = [l for l in vidlist if not key_parser(l.split()[0]) in f]
print(f'Found {args.output}. Remain {len(vidlist)}/{all_len}')
filtered_file = f'/tmp/filtered_{osp.basename(cfg.data.test.ann_file)}'
with open(filtered_file, 'w') as fd:
for l in vidlist:
print(l, file=fd)
cfg.data.test.ann_file = filtered_file
dataset = build_dataset(cfg.data.test, dict(test_mode=True))
dataloader_setting = dict(
videos_per_gpu=cfg.data.get('videos_per_gpu', 1),
workers_per_gpu=cfg.data.get('workers_per_gpu', 1),
dist=distributed,
shuffle=False)
dataloader_setting = dict(dataloader_setting,
**cfg.data.get('test_dataloader', {}))
data_loader = build_dataloader(dataset, **dataloader_setting)
# ========== extract feature ========== #
if not distributed:
# model = MMDataParallel(model, device_ids=[0])
model = model.cuda()
outputs = single_gpu_extract(model, data_loader, args.output, key_parser)
else:
raise NotImplementedError
model = MMDistributedDataParallel(
model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False)
outputs = multi_gpu_test(model, data_loader, args.tmpdir,
args.gpu_collect)
return outputs
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
cfg.merge_from_dict(args.cfg_options)
assert cfg.data.test.ann_file, "No video list provided"
print("Input file:", cfg.data.test.ann_file)
# set cudnn benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
cfg.data.test.test_mode = True
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# The flag is used to register module's hooks
cfg.setdefault('module_hooks', [])
inference_pytorch(args, cfg, distributed)
if __name__ == '__main__':
main()