In these two examples, we use the fermionic chain mapping proposed in to perform tensor network simulations of the Single Impurity Anderson Model (SIAM). The SIAM Hamiltonian is defined as: $ \hat H^\text{SIAM} = \hat H\text{loc} + \hat H\text{hyb} + \hat H\text{cond} = \overbrace{\epsilond \hat d^\dagger \hat d}^{\hat H\text{loc}} + \underbrace{\sum{k} Vk \Big( \hat d^\dagger \hat ck + \hat ck^\dagger \hat d \Big)}{H\text{hyb}} + \underbrace{\sumk \epsilonk \hat ck^\dagger \hat ck}{H_I^\text{chain}}. $
All of the operators obey to the usual fermionic anti-commutation relations: $\{\hat c_i, \hat c_j^\dagger \} = \delta_{ij}$, $\{\hat c_i, \hat c_j \} =\{\hat c_i^\dagger, \hat c_j^\dagger \} =0$ $\forall i,j$. The chain mapping is based on a thermofield-like transformation [2], performed with fermions: ancillary fermionic operators $\hat c_{2k}$ are defined, one for each of the original fermionic modes $\hat c_{1k}$. A Bogoliubov transformation is then applied, so that two new fermionic modes $\hat f_{1k}$ and $\hat f_{2k}$ are defined as a linear combination of $\hat c_{1k}$ and $\hat c_{2k}$. Two chains are defined: the chain labelled $1$ for the empty modes, the chain labelled $2$ for the filled modes. The following relations are used to define the functions equivalent to the spectral density of the bosonic case, one for each chain: $ \begin{split} &V{1k} = V{k} \sin \thetak = \sqrt{\frac{1}{e^{\beta \epsilonk}+1}} \
+ &V{2k} = V{k} \cos \thetak = \sqrt{\frac{1}{e^{-\beta \epsilonk}+1}}, \end{split} $ where we choose the spectral function that characterizes the fermionic bath to be: $V_k= \sqrt{1-k^2}$, and we define the dispersion relation as: $e_k = k$, that is, a linear dispersion relation with propagation speed equal to $1$. This latter choice corresponds to a model of metals (gapless energy spectrum). We select a filled state as the initial state of the defect. Using the mapping proposed in , the chain Hamiltonian becomes: $ \begin{split} \hat H^\text{chain} = \hat H\text{loc} &+ \sum{i = {1,2}}\bigg[ J{i,0} \Big(\hat d^\dagger \hat a{i,0} + \hat d \hat a{i,0}^\dagger \Big) + \ &+ \sum{n=1}^\infty \Big( J{i,n} \hat a{i,n}^\dagger \hat a{i,n-1} + J{i,n} \hat a{i,n-1}^\dagger \hat a{i,n} \Big) + \sum{n=0}^\infty E{i,n} \hat a{i,n}^\dagger \hat a{i,n} \bigg], \end{split} $ where the $J_{i,n}$ coefficients are the couplings between the chain sites and the $E_{i,n}$ coefficients are the energies associated to each chain site. Clearly, the interactions are between nearest neighbors. This, combined with the fact that the fermions in our model are spinless, enables a straightforward mapping into fermionic operators of the bosonic creation and annihilation operators, that on their part obey to the bosonic commutation relations: $[\hat b_i, \hat b_j^\dagger] = \delta_{ij}$, $[\hat b_i, \hat b_j] =[\hat b_i^\dagger, \hat b_j^\dagger] =0$ $\forall i,j$. The mapping derived from Jordan-Wigner transformations for spinless fermions is: $ \hat a{i}^\dagger \hat a{i+1} + \hat a{i+1}^\dagger \hat a{i} = \hat b{i}^\dagger \hat b{i+1} + \hat b{i+1}^\dagger \hat b{i}. $
The corresponding MPO representation is: $ \begin{split} & \begin{bmatrix} \hat{\mathbb I} & J{2,N} \hat b{2,N}^\dagger & J{2,N} \hat b{2,N} & E{2,N} \hat b{2,N}^\dagger \hat b{2,N} \end{bmatrix}\cdot ... \cdot \begin{bmatrix} \hat{ \mathbb I} & J{2,0} \hat b{2,0}^\dagger & J{2,0} \hat b{2,0} & E{2,0} \hat b{2,0}^\dagger \hat b{2,0}\
0 &0 & 0 & \hat b{2,0} \
0 &0 & 0 & \hat b{2,0}^\dagger \
0 &0 & 0 & \hat{\mathbb I} \end{bmatrix} \cdot \ \cdot & \begin{bmatrix} \hat{ \mathbb I} & \hat d^\dagger & \hat d & \epsilond \hat d^\dagger \hat d\
@@ -9,7 +9,7 @@
0 &0 & 0 & \hat{\mathbb I} \end{bmatrix} \cdot \begin{bmatrix} \hat{ \mathbb I} & \hat b{1,0}^\dagger & \hat b{1,0} & E{1,0} \hat b{1,0}^\dagger \hat b{1,0}\
0 &0 & 0 & \hat J{1,0}b{1,0} \
0 &0 & 0 & \hat J{1,0}b{1,0}^\dagger \
-0 &0 & 0 & \hat{\mathbb I} \end{bmatrix} \cdot ... \cdot \begin{bmatrix} E{2,N} \hat b{2,N}^\dagger \hat b{2,N} \ J{2,N} \hat b{2,N} \ J{2,N} \hat b_{2,N}^\dagger \ \hat{\mathbb I} \end{bmatrix} \end{split} \end{equation}
The system starts from a filled state, the chain starts as in the Fermi sea.
The drawback of such a representation though, is that the particle-hole pairs are spatially separated in the MPS, creating correlations and therefore leading to a dramatic increase in the bond dimensions. This is why Kohn and Santoro propose an interleaved geometry, the advantages of which are thoroughly explained in \cite{KohnSantoro2021b}. Exploiting the interleaved representation, the interaction comes to be between next-nearest neighbors: a string operator appears in the Jordan-Wigner transformation from bosons to fermions: \begin{equation} \hat a{i}^\dagger \hat a{i+2} + \hat a{i+2}^\dagger \hat a{i} = \hat b{i}^\dagger \hat F{i+1} \hat b{i+2} + \hat b{i} \hat F{i+1} \hat b{i+2}^\dagger, \end{equation} where the string operator $\hat F_i$ is defined as: \hat Fi = (-1)^{\hat ni} = \hat{\mathbb I} -2 \hat ni = \hat{\mathbb I}-2 \hat bi^\dagger \hat bi. It is possible to find the analytical form also for MPOs with long range interaction \cite{mpo}. In the case of next-nearest neighbors interactions between spinless fermions, the MPO representation will require a bond dimension $\chi=6
. We explicitly write it as: \begin{equation} \begin{split} & \begin{bmatrix} \hat{\mathbb I} & \hat d & \hat d^\dagger & 0 & 0 & E{d} \hat d^\dagger \hat d \end{bmatrix}\cdot \begin{bmatrix} \hat{ \mathbb I} & \hat b{2,0} & \hat b{2,0}^\dagger & 0 & 0 & E{2,0} \hat b{2,0}^\dagger \hat b{2,0}\
+0 &0 & 0 & \hat{\mathbb I} \end{bmatrix} \cdot ... \cdot \begin{bmatrix} E{2,N} \hat b{2,N}^\dagger \hat b{2,N} \ J{2,N} \hat b{2,N} \ J{2,N} \hat b_{2,N}^\dagger \ \hat{\mathbb I} \end{bmatrix} \end{split} $
The system starts from a filled state, the chain starts as in the Fermi sea.
The drawback of such a representation though, is that the particle-hole pairs are spatially separated in the MPS, creating correlations and therefore leading to a dramatic increase in the bond dimensions. This is why Kohn and Santoro propose an interleaved geometry, the advantages of which are thoroughly explained in \cite{KohnSantoro2021b}. Exploiting the interleaved representation, the interaction comes to be between next-nearest neighbors: a string operator appears in the Jordan-Wigner transformation from bosons to fermions: $ \hat a{i}^\dagger \hat a{i+2} + \hat a{i+2}^\dagger \hat a{i} = \hat b{i}^\dagger \hat F{i+1} \hat b{i+2} + \hat b{i} \hat F{i+1} \hat b{i+2}^\dagger, $ where the string operator $\hat F_i$ is defined as: \hat Fi = (-1)^{\hat ni} = \hat{\mathbb I} -2 \hat ni = \hat{\mathbb I}-2 \hat bi^\dagger \hat bi. It is possible to find the analytical form also for MPOs with long range interaction \cite{mpo}. In the case of next-nearest neighbors interactions between spinless fermions, the MPO representation will require a bond dimension $\chi=6
. We explicitly write it as: $ \begin{split} & \begin{bmatrix} \hat{\mathbb I} & \hat d & \hat d^\dagger & 0 & 0 & E{d} \hat d^\dagger \hat d \end{bmatrix}\cdot \begin{bmatrix} \hat{ \mathbb I} & \hat b{2,0} & \hat b{2,0}^\dagger & 0 & 0 & E{2,0} \hat b{2,0}^\dagger \hat b{2,0}\
0 &0 & 0 & \hat{F}{2,0} & 0 & J{2,0} \hat b{2,0}^\dagger \
0 &0 & 0 & 0 & \hat{F}{2,0} & J{2,0} \hat b{2,0} \
0 &0 & 0 & 0 & 0 & 0\
@@ -24,4 +24,4 @@
0 &0 & 0 & 0 & \hat{F}{2,N} & 0 \
0 &0 & 0 & 0 & 0 & J{2,N} \hat b{2,N}^\dagger \
0 &0 & 0 & 0 & 0 & J{2,N} \hat b{2,N} \
-0 &0 & 0 & 0 & 0 & \hat{\mathbb I} \end{bmatrix} \cdot \ \cdot & \begin{bmatrix} E{1,N} \hat b{1,N}^\dagger \hat b{1,N} \ 0 \0 \ J{1,N} \hat b{1,N}^\dagger \ J{1,N} \hat b{1,N} \ \hat{\mathbb I} \end{bmatrix} \end{split} \end{equation} ________________