-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathscript.py
63 lines (47 loc) · 1.46 KB
/
script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import csv
import numpy as np
from sklearn.svm import SVR
import matplotlib.pyplot as plt
dates = []
prices = []
def get_data(filename):
with open(filename, 'r') as csvfile:
csvFileReader = csv.reader(csvfile)
next(csvFileReader)
for row in csvFileReader:
dates.append(int(row[0].split('-')[0]))
prices.append(float(row[1]))
return
def predict_prices(dates, prices, x):
dates = np.reshape(dates, (len(dates), 1))
svr_lin = SVR(kernel= 'linear', C=1e3)
svr_poly = SVR(kernel= 'poly', C=1e3, degree= 2)
svr_rbf = SVR(kernel= 'rbf', C=1e3, gamma=0.1)
svr_lin.fit(dates, prices)
svr_poly.fit(dates, prices)
svr_rbf.fit(dates, prices)
plt.scatter(dates,
prices,
color="black",
label="Data")
plt.plot(dates,
svr_rbf.predict(dates),
color="red",
label="RBF Model")
plt.plot(dates,
svr_lin.predict(dates),
color="green",
label='linear Model')
plt.plot(dates,
svr_poly.predict(dates),
color="blue",
label="Ploynomial Model")
plt.xlabel('Dates')
plt.ylabel('Price')
plt.title('Support Vector Reg')
plt.legend()
plt.show()
return svr_rbf.predict(x)[0], svr_lin.predict(x)[0], svr_poly.predict(x)[0]
get_data('aapl.csv')
predicted_prices = predict_prices(dates, prices, 29)
print(predicted_prices)