-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathphy.c
1010 lines (837 loc) · 24.7 KB
/
phy.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* (c) Copyright 2002-2010, Ralink Technology, Inc.
* Copyright (C) 2014 Felix Fietkau <nbd@openwrt.org>
* Copyright (C) 2015 Jakub Kicinski <kubakici@wp.pl>
* Copyright (C) 2018 Stanislaw Gruszka <stf_xl@wp.pl>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "mt76x0.h"
#include "mcu.h"
#include "eeprom.h"
#include "trace.h"
#include "phy.h"
#include "initvals.h"
#include "initvals_phy.h"
#include <linux/etherdevice.h>
static int
mt76x0_rf_csr_wr(struct mt76x0_dev *dev, u32 offset, u8 value)
{
int ret = 0;
u8 bank, reg;
if (WARN_ON(!test_bit(MT76X0U_STATE_WLAN_RUNNING, &dev->state)))
return -EINVAL;
if (test_bit(MT76X0U_STATE_REMOVED, &dev->state))
return -ENODEV;
bank = MT_RF_BANK(offset);
reg = MT_RF_REG(offset);
if (WARN_ON_ONCE(reg > 64) || WARN_ON_ONCE(bank) > 8)
return -EINVAL;
mutex_lock(&dev->reg_atomic_mutex);
if (!mt76_poll(dev, MT_RF_CSR_CFG, MT_RF_CSR_CFG_KICK, 0, 100)) {
ret = -ETIMEDOUT;
goto out;
}
mt76x0_wr(dev, MT_RF_CSR_CFG,
FIELD_PREP(MT_RF_CSR_CFG_DATA, value) |
FIELD_PREP(MT_RF_CSR_CFG_REG_BANK, bank) |
FIELD_PREP(MT_RF_CSR_CFG_REG_ID, reg) |
MT_RF_CSR_CFG_WR |
MT_RF_CSR_CFG_KICK);
trace_rf_write(dev, bank, offset, value);
out:
mutex_unlock(&dev->reg_atomic_mutex);
if (ret < 0)
dev_err(dev->dev, "Error: RF write %d:%d failed:%d!!\n",
bank, reg, ret);
return ret;
}
static int
mt76x0_rf_csr_rr(struct mt76x0_dev *dev, u32 offset)
{
int ret = -ETIMEDOUT;
u32 val;
u8 bank, reg;
if (WARN_ON(!test_bit(MT76X0U_STATE_WLAN_RUNNING, &dev->state)))
return -EINVAL;
if (test_bit(MT76X0U_STATE_REMOVED, &dev->state))
return -ENODEV;
bank = MT_RF_BANK(offset);
reg = MT_RF_REG(offset);
if (WARN_ON_ONCE(reg > 64) || WARN_ON_ONCE(bank) > 8)
return -EINVAL;
mutex_lock(&dev->reg_atomic_mutex);
if (!mt76_poll(dev, MT_RF_CSR_CFG, MT_RF_CSR_CFG_KICK, 0, 100))
goto out;
mt76x0_wr(dev, MT_RF_CSR_CFG,
FIELD_PREP(MT_RF_CSR_CFG_REG_BANK, bank) |
FIELD_PREP(MT_RF_CSR_CFG_REG_ID, reg) |
MT_RF_CSR_CFG_KICK);
if (!mt76_poll(dev, MT_RF_CSR_CFG, MT_RF_CSR_CFG_KICK, 0, 100))
goto out;
val = mt76x0_rr(dev, MT_RF_CSR_CFG);
if (FIELD_GET(MT_RF_CSR_CFG_REG_ID, val) == reg &&
FIELD_GET(MT_RF_CSR_CFG_REG_BANK, val) == bank) {
ret = FIELD_GET(MT_RF_CSR_CFG_DATA, val);
trace_rf_read(dev, bank, offset, ret);
}
out:
mutex_unlock(&dev->reg_atomic_mutex);
if (ret < 0)
dev_err(dev->dev, "Error: RF read %d:%d failed:%d!!\n",
bank, reg, ret);
return ret;
}
static int
rf_wr(struct mt76x0_dev *dev, u32 offset, u8 val)
{
if (test_bit(MT76X0U_STATE_MCU_RUNNING, &dev->state)) {
struct mt76_reg_pair pair = {
.reg = offset,
.value = val,
};
return mt76x0_write_reg_pairs(dev, MT_MCU_MEMMAP_RF, &pair, 1);
} else {
WARN_ON_ONCE(1);
return mt76x0_rf_csr_wr(dev, offset, val);
}
}
static int
rf_rr(struct mt76x0_dev *dev, u32 offset)
{
int ret;
u32 val;
if (test_bit(MT76X0U_STATE_MCU_RUNNING, &dev->state)) {
struct mt76_reg_pair pair = {
.reg = offset,
};
ret = mt76x0_read_reg_pairs(dev, MT_MCU_MEMMAP_RF, &pair, 1);
val = pair.value;
} else {
WARN_ON_ONCE(1);
ret = val = mt76x0_rf_csr_rr(dev, offset);
}
return (ret < 0) ? ret : val;
}
static int
rf_rmw(struct mt76x0_dev *dev, u32 offset, u8 mask, u8 val)
{
int ret;
ret = rf_rr(dev, offset);
if (ret < 0)
return ret;
val |= ret & ~mask;
ret = rf_wr(dev, offset, val);
if (ret)
return ret;
return val;
}
static int
rf_set(struct mt76x0_dev *dev, u32 offset, u8 val)
{
return rf_rmw(dev, offset, 0, val);
}
static int
rf_clear(struct mt76x0_dev *dev, u32 offset, u8 mask)
{
return rf_rmw(dev, offset, mask, 0);
}
#define RF_RANDOM_WRITE(dev, tab) \
mt76x0_write_reg_pairs(dev, MT_MCU_MEMMAP_RF, tab, ARRAY_SIZE(tab));
int mt76x0_wait_bbp_ready(struct mt76x0_dev *dev)
{
int i = 20;
u32 val;
do {
val = mt76x0_rr(dev, MT_BBP(CORE, 0));
printk("BBP version %08x\n", val);
if (val && ~val)
break;
} while (--i);
if (!i) {
dev_err(dev->dev, "Error: BBP is not ready\n");
return -EIO;
}
return 0;
}
static void
mt76x0_bbp_set_ctrlch(struct mt76x0_dev *dev, enum nl80211_chan_width width,
u8 ctrl)
{
int core_val, agc_val;
switch (width) {
case NL80211_CHAN_WIDTH_80:
core_val = 3;
agc_val = 7;
break;
case NL80211_CHAN_WIDTH_40:
core_val = 2;
agc_val = 3;
break;
default:
core_val = 0;
agc_val = 1;
break;
}
mt76_rmw_field(dev, MT_BBP(CORE, 1), MT_BBP_CORE_R1_BW, core_val);
mt76_rmw_field(dev, MT_BBP(AGC, 0), MT_BBP_AGC_R0_BW, agc_val);
mt76_rmw_field(dev, MT_BBP(AGC, 0), MT_BBP_AGC_R0_CTRL_CHAN, ctrl);
mt76_rmw_field(dev, MT_BBP(TXBE, 0), MT_BBP_TXBE_R0_CTRL_CHAN, ctrl);
}
int mt76x0_phy_get_rssi(struct mt76x0_dev *dev, struct mt76x0_rxwi *rxwi)
{
s8 lna_gain, rssi_offset;
int val;
if (dev->chandef.chan->band == NL80211_BAND_2GHZ) {
lna_gain = dev->ee->lna_gain_2ghz;
rssi_offset = dev->ee->rssi_offset_2ghz[0];
} else {
// TODO
lna_gain = dev->ee->lna_gain_5ghz[0];
rssi_offset = dev->ee->rssi_offset_5ghz[0];
}
val = rxwi->rssi[0] + rssi_offset - lna_gain;
return val;
}
static void mt76x0_vco_cal(struct mt76x0_dev *dev, u8 channel)
{
u8 val;
val = rf_rr(dev, MT_RF(0, 4));
if ((val & 0x70) != 0x30)
return;
/*
* Calibration Mode - Open loop, closed loop, and amplitude:
* B0.R06.[0]: 1
* B0.R06.[3:1] bp_close_code: 100
* B0.R05.[7:0] bp_open_code: 0x0
* B0.R04.[2:0] cal_bits: 000
* B0.R03.[2:0] startup_time: 011
* B0.R03.[6:4] settle_time:
* 80MHz channel: 110
* 40MHz channel: 101
* 20MHz channel: 100
*/
val = rf_rr(dev, MT_RF(0, 6));
val &= ~0xf;
val |= 0x09;
rf_wr(dev, MT_RF(0, 6), val);
val = rf_rr(dev, MT_RF(0, 5));
if (val != 0)
rf_wr(dev, MT_RF(0, 5), 0x0);
val = rf_rr(dev, MT_RF(0, 4));
val &= ~0x07;
rf_wr(dev, MT_RF(0, 4), val);
val = rf_rr(dev, MT_RF(0, 3));
val &= ~0x77;
if (channel == 1 || channel == 7 || channel == 9 || channel >= 13) {
val |= 0x63;
} else if (channel == 3 || channel == 4 || channel == 10) {
val |= 0x53;
} else if (channel == 2 || channel == 5 || channel == 6 ||
channel == 8 || channel == 11 || channel == 12) {
val |= 0x43;
} else {
WARN(1, "Unknown channel %u\n", channel);
return;
}
rf_wr(dev, MT_RF(0, 3), val);
// TODO replace by mt76x0_rf_set(dev, MT_RF(0, 4), BIT(7));
val = rf_rr(dev, MT_RF(0, 4));
val = ((val & ~(0x80)) | 0x80);
rf_wr(dev, MT_RF(0, 4), val);
msleep(2);
}
static void
mt76x0_mac_set_ctrlch(struct mt76x0_dev *dev, bool primary_upper)
{
mt76_rmw_field(dev, MT_TX_BAND_CFG, MT_TX_BAND_CFG_UPPER_40M,
primary_upper);
}
static void
mt76x0_phy_set_band(struct mt76x0_dev *dev, enum nl80211_band band)
{
switch (band) {
case NL80211_BAND_2GHZ:
RF_RANDOM_WRITE(dev, mt76x0_rf_2g_channel_0_tab);
rf_wr(dev, MT_RF(5, 0), 0x45);
rf_wr(dev, MT_RF(6, 0), 0x44);
mt76_set(dev, MT_TX_BAND_CFG, MT_TX_BAND_CFG_2G);
mt76_clear(dev, MT_TX_BAND_CFG, MT_TX_BAND_CFG_5G);
mt76_wr(dev, MT_TX_ALC_VGA3, 0x00050007);
mt76_wr(dev, MT_TX0_RF_GAIN_CORR, 0x003E0002);
break;
case NL80211_BAND_5GHZ:
RF_RANDOM_WRITE(dev, mt76x0_rf_5g_channel_0_tab);
rf_wr(dev, MT_RF(5, 0), 0x44);
rf_wr(dev, MT_RF(6, 0), 0x45);
mt76_clear(dev, MT_TX_BAND_CFG, MT_TX_BAND_CFG_2G);
mt76_set(dev, MT_TX_BAND_CFG, MT_TX_BAND_CFG_5G);
mt76_wr(dev, MT_TX_ALC_VGA3, 0x00000005);
mt76_wr(dev, MT_TX0_RF_GAIN_CORR, 0x01010102);
break;
default:
break;
}
}
#define EXT_PA_2G_5G 0x0
#define EXT_PA_5G_ONLY 0x1
#define EXT_PA_2G_ONLY 0x2
#define INT_PA_2G_5G 0x3
static void
mt76x0_phy_set_chan_rf_params(struct mt76x0_dev *dev, u8 channel, u16 rf_bw_band)
{
u16 rf_band;
u16 rf_bw = rf_bw_band & 0x00ff;
u32 mac_reg;
u8 rf_val;
int i;
bool bSDM = false;
const struct mt76x0_freq_item *freq_item;
for (i = 0; i < ARRAY_SIZE(mt76x0_sdm_channel); i++) {
if (channel == mt76x0_sdm_channel[i]) {
bSDM = true;
break;
}
}
for (i = 0; i < ARRAY_SIZE(mt76x0_frequency_plan); i++) {
if (channel == mt76x0_frequency_plan[i].channel) {
rf_band = mt76x0_frequency_plan[i].band;
if (bSDM)
freq_item = &(mt76x0_sdm_frequency_plan[i]);
else
freq_item = &(mt76x0_frequency_plan[i]);
rf_wr(dev, MT_RF(0, 37), freq_item->pllR37);
rf_wr(dev, MT_RF(0, 36), freq_item->pllR36);
rf_wr(dev, MT_RF(0, 35), freq_item->pllR35);
rf_wr(dev, MT_RF(0, 34), freq_item->pllR34);
rf_wr(dev, MT_RF(0, 33), freq_item->pllR33);
rf_val = rf_rr(dev, MT_RF(0, 32));
rf_val &= ~0xE0;
rf_val |= freq_item->pllR32_b7b5;
rf_wr(dev, MT_RF(0, 32), rf_val);
/* R32<4:0> pll_den: (Denomina - 8) */
rf_val = rf_rr(dev, MT_RF(0, 32));
rf_val &= ~0x1F;
rf_val |= freq_item->pllR32_b4b0;
rf_wr(dev, MT_RF(0, 32), rf_val);
/* R31<7:5> */
rf_val = rf_rr(dev, MT_RF(0, 31));
rf_val &= ~0xE0;
rf_val |= freq_item->pllR31_b7b5;
rf_wr(dev, MT_RF(0, 31), rf_val);
/* R31<4:0> pll_k(Nominator) */
rf_val = rf_rr(dev, MT_RF(0, 31));
rf_val &= ~0x1F;
rf_val |= freq_item->pllR31_b4b0;
rf_wr(dev, MT_RF(0, 31), rf_val);
/* R30<7> sdm_reset_n */
rf_val = rf_rr(dev, MT_RF(0, 30));
rf_val &= ~0x80;
if (bSDM) {
rf_wr(dev, MT_RF(0, 30), rf_val);
rf_val |= 0x80;
rf_wr(dev, MT_RF(0, 30), rf_val);
} else {
rf_val |= freq_item->pllR30_b7;
rf_wr(dev, MT_RF(0, 30), rf_val);
}
/* R30<6:2> sdmmash_prbs,sin */
rf_val = rf_rr(dev, MT_RF(0, 30));
rf_val &= ~0x7C;
rf_val |= freq_item->pllR30_b6b2;
rf_wr(dev, MT_RF(0, 30), rf_val);
/* R30<1> sdm_bp */
rf_val = rf_rr(dev, MT_RF(0, 30));
rf_val &= ~0x02;
rf_val |= (freq_item->pllR30_b1 << 1);
rf_wr(dev, MT_RF(0, 30), rf_val);
/* R30<0> R29<7:0> (hex) pll_n */
rf_val = freq_item->pll_n & 0x00FF;
rf_wr(dev, MT_RF(0, 29), rf_val);
rf_val = rf_rr(dev, MT_RF(0, 30));
rf_val &= ~0x1;
rf_val |= ((freq_item->pll_n >> 8) & 0x0001);
rf_wr(dev, MT_RF(0, 30), rf_val);
/* R28<7:6> isi_iso */
rf_val = rf_rr(dev, MT_RF(0, 28));
rf_val &= ~0xC0;
rf_val |= freq_item->pllR28_b7b6;
rf_wr(dev, MT_RF(0, 28), rf_val);
/* R28<5:4> pfd_dly */
rf_val = rf_rr(dev, MT_RF(0, 28));
rf_val &= ~0x30;
rf_val |= freq_item->pllR28_b5b4;
rf_wr(dev, MT_RF(0, 28), rf_val);
/* R28<3:2> clksel option */
rf_val = rf_rr(dev, MT_RF(0, 28));
rf_val &= ~0x0C;
rf_val |= freq_item->pllR28_b3b2;
rf_wr(dev, MT_RF(0, 28), rf_val);
/* R28<1:0> R27<7:0> R26<7:0> (hex) sdm_k */
rf_val = freq_item->pll_sdm_k & 0x000000FF;
rf_wr(dev, MT_RF(0, 26), rf_val);
rf_val = ((freq_item->pll_sdm_k >> 8) & 0x000000FF);
rf_wr(dev, MT_RF(0, 27), rf_val);
rf_val = rf_rr(dev, MT_RF(0, 28));
rf_val &= ~0x3;
rf_val |= ((freq_item->pll_sdm_k >> 16) & 0x0003);
rf_wr(dev, MT_RF(0, 28), rf_val);
/* R24<1:0> xo_div */
rf_val = rf_rr(dev, MT_RF(0, 24));
rf_val &= ~0x3;
rf_val |= freq_item->pllR24_b1b0;
rf_wr(dev, MT_RF(0, 24), rf_val);
break;
}
}
for (i = 0; i < ARRAY_SIZE(mt76x0_rf_bw_switch_tab); i++) {
if (rf_bw == mt76x0_rf_bw_switch_tab[i].bw_band) {
rf_wr(dev, mt76x0_rf_bw_switch_tab[i].rf_bank_reg,
mt76x0_rf_bw_switch_tab[i].value);
} else if ((rf_bw == (mt76x0_rf_bw_switch_tab[i].bw_band & 0xFF)) &&
(rf_band & mt76x0_rf_bw_switch_tab[i].bw_band)) {
rf_wr(dev, mt76x0_rf_bw_switch_tab[i].rf_bank_reg,
mt76x0_rf_bw_switch_tab[i].value);
}
}
for (i = 0; i < ARRAY_SIZE(mt76x0_rf_band_switch_tab); i++) {
if (mt76x0_rf_band_switch_tab[i].bw_band & rf_band) {
rf_wr(dev, mt76x0_rf_band_switch_tab[i].rf_bank_reg,
mt76x0_rf_band_switch_tab[i].value);
}
}
mac_reg = mt76_rr(dev, MT_RF_MISC);
mac_reg &= ~0xC; /* Clear 0x518[3:2] */
mt76_wr(dev, MT_RF_MISC, mac_reg);
if (dev->ee->pa_type == INT_PA_2G_5G ||
(dev->ee->pa_type == EXT_PA_5G_ONLY && (rf_band & RF_G_BAND)) ||
(dev->ee->pa_type == EXT_PA_2G_ONLY && (rf_band & RF_A_BAND))) {
; /* Internal PA - nothing to do. */
} else {
/*
MT_RF_MISC (offset: 0x0518)
[2]1'b1: enable external A band PA, 1'b0: disable external A band PA
[3]1'b1: enable external G band PA, 1'b0: disable external G band PA
*/
if (rf_band & RF_A_BAND) {
mac_reg = mt76_rr(dev, MT_RF_MISC);
mac_reg |= 0x4;
mt76_wr(dev, MT_RF_MISC, mac_reg);
} else {
mac_reg = mt76_rr(dev, MT_RF_MISC);
mac_reg |= 0x8;
mt76_wr(dev, MT_RF_MISC, mac_reg);
}
/* External PA */
for (i = 0; i < ARRAY_SIZE(mt76x0_rf_ext_pa_tab); i++)
if (mt76x0_rf_ext_pa_tab[i].bw_band & rf_band)
rf_wr(dev, mt76x0_rf_ext_pa_tab[i].rf_bank_reg,
mt76x0_rf_ext_pa_tab[i].value);
}
if (rf_band & RF_G_BAND) {
mt76_wr(dev, MT_TX0_RF_GAIN_ATTEN, 0x63707400);
/* Set Atten mode = 2 For G band, Disable Tx Inc dcoc. */
mac_reg = mt76_rr(dev, MT_TX_ALC_CFG_1);
mac_reg &= 0x896400FF;
mt76_wr(dev, MT_TX_ALC_CFG_1, mac_reg);
} else {
mt76_wr(dev, MT_TX0_RF_GAIN_ATTEN, 0x686A7800);
/* Set Atten mode = 0 For Ext A band, Disable Tx Inc dcoc Cal. */
mac_reg = mt76_rr(dev, MT_TX_ALC_CFG_1);
mac_reg &= 0x890400FF;
mt76_wr(dev, MT_TX_ALC_CFG_1, mac_reg);
}
}
static void
mt76x0_phy_set_chan_bbp_params(struct mt76x0_dev *dev, u8 channel, u16 rf_bw_band)
{
int i;
for (i = 0; i < ARRAY_SIZE(mt76x0_bbp_switch_tab); i++) {
const struct mt76x0_bbp_switch_item *item = &mt76x0_bbp_switch_tab[i];
const struct mt76_reg_pair *pair = &item->reg_pair;
if ((rf_bw_band & item->bw_band) != rf_bw_band)
continue;
if (pair->reg == MT_BBP(AGC, 8)) {
u32 val = pair->value;
u8 gain = FIELD_GET(MT_BBP_AGC_GAIN, val);
if (channel > 14) {
if (channel < 100)
gain -= dev->ee->lna_gain_5ghz[0]*2;
else if (channel < 137)
gain -= dev->ee->lna_gain_5ghz[1]*2;
else
gain -= dev->ee->lna_gain_5ghz[2]*2;
} else {
gain -= dev->ee->lna_gain_2ghz*2;
}
val &= ~MT_BBP_AGC_GAIN;
val |= FIELD_PREP(MT_BBP_AGC_GAIN, gain);
mt76_wr(dev, pair->reg, val);
} else {
mt76_wr(dev, pair->reg, pair->value);
}
}
}
#if 0
static void
mt76x0_extra_power_over_mac(struct mt76x0_dev *dev)
{
u32 val;
val = ((mt76x0_rr(dev, MT_TX_PWR_CFG_1) & 0x00003f00) >> 8);
val |= ((mt76x0_rr(dev, MT_TX_PWR_CFG_2) & 0x00003f00) << 8);
mt76x0_wr(dev, MT_TX_PWR_CFG_7, val);
/* TODO: fix VHT */
val = ((mt76x0_rr(dev, MT_TX_PWR_CFG_3) & 0x0000ff00) >> 8);
mt76x0_wr(dev, MT_TX_PWR_CFG_8, val);
val = ((mt76x0_rr(dev, MT_TX_PWR_CFG_4) & 0x0000ff00) >> 8);
mt76x0_wr(dev, MT_TX_PWR_CFG_9, val);
}
static void
mt76x0_phy_set_tx_power(struct mt76x0_dev *dev, u8 channel, u8 rf_bw_band)
{
u32 val;
int i;
int bw = (rf_bw_band & RF_BW_20) ? 0 : 1;
for (i = 0; i < 4; i++) {
if (channel <= 14)
val = dev->ee->tx_pwr_cfg_2g[i][bw];
else
val = dev->ee->tx_pwr_cfg_5g[i][bw];
mt76x0_wr(dev, MT_TX_PWR_CFG_0 + 4*i, val);
}
mt76x0_extra_power_over_mac(dev);
}
#endif
static void
mt76x0_bbp_set_bw(struct mt76x0_dev *dev, enum nl80211_chan_width width)
{
enum { BW_20 = 0, BW_40 = 1, BW_80 = 2, BW_10 = 4};
int bw;
switch (width) {
case NL80211_CHAN_WIDTH_20_NOHT:
case NL80211_CHAN_WIDTH_20:
bw = BW_20;
break;
case NL80211_CHAN_WIDTH_40:
bw = BW_40;
break;
case NL80211_CHAN_WIDTH_80:
bw = BW_80;
break;
case NL80211_CHAN_WIDTH_10:
bw = BW_10;
break;
case NL80211_CHAN_WIDTH_80P80:
case NL80211_CHAN_WIDTH_160:
case NL80211_CHAN_WIDTH_5:
/* TODO error */
return ;
}
mt76x0_mcu_function_select(dev, BW_SETTING, bw);
}
static void
mt76x0_phy_set_chan_pwr(struct mt76x0_dev *dev, u8 channel)
{
static const int mt76x0_tx_pwr_ch_list[] = {
1,2,3,4,5,6,7,8,9,10,11,12,13,14,
36,38,40,44,46,48,52,54,56,60,62,64,
100,102,104,108,110,112,116,118,120,124,126,128,132,134,136,140,
149,151,153,157,159,161,165,167,169,171,173,
42,58,106,122,155
};
int i;
u32 val;
for (i = 0; i < ARRAY_SIZE(mt76x0_tx_pwr_ch_list); i++)
if (mt76x0_tx_pwr_ch_list[i] == channel)
break;
if (WARN_ON(i == ARRAY_SIZE(mt76x0_tx_pwr_ch_list)))
return;
val = mt76_rr(dev, MT_TX_ALC_CFG_0);
val &= ~0x3f3f;
val |= dev->ee->tx_pwr_per_chan[i];
val |= 0x2f2f << 16;
mt76_wr(dev, MT_TX_ALC_CFG_0, val);
}
static int
__mt76x0_phy_set_channel(struct mt76x0_dev *dev,
struct cfg80211_chan_def *chandef)
{
u32 ext_cca_chan[4] = {
[0] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 0) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 1) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 2) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 3) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(0)),
[1] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 1) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 0) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 2) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 3) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(1)),
[2] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 2) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 3) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 1) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 0) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(2)),
[3] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 3) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 2) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 1) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 0) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(3)),
};
bool scan = test_bit(MT76X0U_STATE_SCANNING, &dev->state);
int ch_group_index, freq, freq1;
u8 channel;
u32 val;
u16 rf_bw_band;
freq = chandef->chan->center_freq;
freq1 = chandef->center_freq1;
channel = chandef->chan->hw_value;
rf_bw_band = (channel <= 14) ? RF_G_BAND : RF_A_BAND;
switch (chandef->width) {
case NL80211_CHAN_WIDTH_40:
if (freq1 > freq)
ch_group_index = 0;
else
ch_group_index = 1;
channel += 2 - ch_group_index * 4;
rf_bw_band |= RF_BW_40;
break;
case NL80211_CHAN_WIDTH_80:
ch_group_index = (freq - freq1 + 30) / 20;
if (WARN_ON(ch_group_index < 0 || ch_group_index > 3))
ch_group_index = 0;
channel += 6 - ch_group_index * 4;
rf_bw_band |= RF_BW_80;
break;
default:
ch_group_index = 0;
rf_bw_band |= RF_BW_20;
break;
}
mt76x0_bbp_set_bw(dev, chandef->width);
mt76x0_bbp_set_ctrlch(dev, chandef->width, ch_group_index);
mt76x0_mac_set_ctrlch(dev, ch_group_index & 1);
mt76_rmw(dev, MT_EXT_CCA_CFG,
(MT_EXT_CCA_CFG_CCA0 |
MT_EXT_CCA_CFG_CCA1 |
MT_EXT_CCA_CFG_CCA2 |
MT_EXT_CCA_CFG_CCA3 |
MT_EXT_CCA_CFG_CCA_MASK),
ext_cca_chan[ch_group_index]);
mt76x0_phy_set_band(dev, chandef->chan->band);
mt76x0_phy_set_chan_rf_params(dev, channel, rf_bw_band);
/* set Japan Tx filter at channel 14 */
val = mt76_rr(dev, MT_BBP(CORE, 1));
if (channel == 14)
val |= 0x20;
else
val &= ~0x20;
mt76_wr(dev, MT_BBP(CORE, 1), val);
mt76x0_phy_set_chan_bbp_params(dev, channel, rf_bw_band);
/* Vendor driver don't do it */
//mt76x0_phy_set_tx_power(dev, channel, rf_bw_band);
if (scan)
mt76x0_vco_cal(dev, channel);
mt76x0_mcu_calibrate(dev, MCU_CAL_RXDCOC, 1);
mt76x0_phy_set_chan_pwr(dev, channel);
dev->chandef = *chandef;
return 0;
}
int mt76x0_phy_set_channel(struct mt76x0_dev *dev,
struct cfg80211_chan_def *chandef)
{
int ret;
mutex_lock(&dev->hw_atomic_mutex);
ret = __mt76x0_phy_set_channel(dev, chandef);
mutex_unlock(&dev->hw_atomic_mutex);
return ret;
}
void mt76x0_phy_recalibrate_after_assoc(struct mt76x0_dev *dev)
{
u32 tx_alc, reg_val;
u8 channel = dev->chandef.chan->hw_value;
int is_5ghz = (dev->chandef.chan->band == NL80211_BAND_5GHZ) ? 1 : 0;
mt76x0_mcu_calibrate(dev, MCU_CAL_R, 0);
mt76x0_vco_cal(dev, channel);
tx_alc = mt76_rr(dev, MT_TX_ALC_CFG_0);
mt76_wr(dev, MT_TX_ALC_CFG_0, 0);
usleep_range(500, 700);
reg_val = mt76_rr(dev, 0x2124);
reg_val &= 0xffffff7e;
mt76_wr(dev, 0x2124, reg_val);
mt76x0_mcu_calibrate(dev, MCU_CAL_RXDCOC, 0);
mt76x0_mcu_calibrate(dev, MCU_CAL_LC, is_5ghz);
mt76x0_mcu_calibrate(dev, MCU_CAL_LOFT, is_5ghz);
mt76x0_mcu_calibrate(dev, MCU_CAL_TXIQ, is_5ghz);
mt76x0_mcu_calibrate(dev, MCU_CAL_TX_GROUP_DELAY, is_5ghz);
mt76x0_mcu_calibrate(dev, MCU_CAL_RXIQ, is_5ghz);
mt76x0_mcu_calibrate(dev, MCU_CAL_RX_GROUP_DELAY, is_5ghz);
mt76x0_wr(dev, 0x2124, reg_val);
mt76x0_wr(dev, MT_TX_ALC_CFG_0, tx_alc);
msleep(100);
mt76x0_mcu_calibrate(dev, MCU_CAL_RXDCOC, 1);
}
void mt76x0_agc_save(struct mt76x0_dev *dev)
{
/* Only one RX path */
dev->agc_save = FIELD_GET(MT_BBP_AGC_GAIN, mt76_rr(dev, MT_BBP(AGC, 8)));
}
void mt76x0_agc_restore(struct mt76x0_dev *dev)
{
mt76_rmw_field(dev, MT_BBP(AGC, 8), MT_BBP_AGC_GAIN, dev->agc_save);
}
static void mt76x0_temp_sensor(struct mt76x0_dev *dev)
{
u8 rf_b7_73, rf_b0_66, rf_b0_67;
int cycle, temp;
u32 val;
s32 sval;
rf_b7_73 = rf_rr(dev, MT_RF(7, 73));
rf_b0_66 = rf_rr(dev, MT_RF(0, 66));
rf_b0_67 = rf_rr(dev, MT_RF(0, 73));
rf_wr(dev, MT_RF(7, 73), 0x02);
rf_wr(dev, MT_RF(0, 66), 0x23);
rf_wr(dev, MT_RF(0, 73), 0x01);
mt76_wr(dev, MT_BBP(CORE, 34), 0x00080055);
for (cycle = 0; cycle < 2000; cycle++) {
val = mt76_rr(dev, MT_BBP(CORE, 34));
if (!(val & 0x10))
break;
udelay(3);
}
if (cycle >= 2000) {
val &= 0x10;
mt76_wr(dev, MT_BBP(CORE, 34), val);
goto done;
}
sval = mt76_rr(dev, MT_BBP(CORE, 35)) & 0xff;
if (!(sval & 0x80))
sval &= 0x7f; /* Positive */
else
sval |= 0xffffff00; /* Negative */
temp = (35 * (sval - dev->ee->temp_off))/ 10 + 25;
done:
rf_wr(dev, MT_RF(7, 73), rf_b7_73);
rf_wr(dev, MT_RF(0, 66), rf_b0_66);
rf_wr(dev, MT_RF(0, 73), rf_b0_67);
}
static void mt76x0_dynamic_vga_tuning(struct mt76x0_dev *dev)
{
u32 val, init_vga;
init_vga = (dev->chandef.chan->band == NL80211_BAND_5GHZ) ? 0x54 : 0x4E;
if (dev->avg_rssi > -60)
init_vga -= 0x20;
else if (dev->avg_rssi > -70)
init_vga -= 0x10;
val = mt76_rr(dev, MT_BBP(AGC, 8));
val &= 0xFFFF80FF;
val |= init_vga << 8;
mt76_wr(dev, MT_BBP(AGC,8), val);
}
static void mt76x0_phy_calibrate(struct work_struct *work)
{
struct mt76x0_dev *dev = container_of(work, struct mt76x0_dev,
cal_work.work);
mt76x0_dynamic_vga_tuning(dev);
mt76x0_temp_sensor(dev);
ieee80211_queue_delayed_work(dev->hw, &dev->cal_work,
MT_CALIBRATE_INTERVAL);
}
void mt76x0_phy_con_cal_onoff(struct mt76x0_dev *dev,
struct ieee80211_bss_conf *info)
{
/* Start/stop collecting beacon data */
spin_lock_bh(&dev->con_mon_lock);
ether_addr_copy(dev->ap_bssid, info->bssid);
dev->avg_rssi = 0;
dev->bcn_freq_off = MT_FREQ_OFFSET_INVALID;
spin_unlock_bh(&dev->con_mon_lock);
}
static void
mt76x0_set_rx_chains(struct mt76x0_dev *dev)
{
u32 val;
val = mt76_rr(dev, MT_BBP(AGC, 0));
val &= ~(BIT(3) | BIT(4));
if (dev->chainmask & BIT(1))
val |= BIT(3);
mt76_wr(dev, MT_BBP(AGC, 0), val);
mb();
val = mt76_rr(dev, MT_BBP(AGC, 0));
}
static void
mt76x0_set_tx_dac(struct mt76x0_dev *dev)
{
if (dev->chainmask & BIT(1))
mt76_set(dev, MT_BBP(TXBE, 5), 3);
else
mt76_clear(dev, MT_BBP(TXBE, 5), 3);
}
static void
mt76x0_rf_init(struct mt76x0_dev *dev)
{
int i;
u8 val;
RF_RANDOM_WRITE(dev, mt76x0_rf_central_tab);
RF_RANDOM_WRITE(dev, mt76x0_rf_2g_channel_0_tab);
RF_RANDOM_WRITE(dev, mt76x0_rf_5g_channel_0_tab);
RF_RANDOM_WRITE(dev, mt76x0_rf_vga_channel_0_tab);
for (i = 0; i < ARRAY_SIZE(mt76x0_rf_bw_switch_tab); i++) {
const struct mt76x0_rf_switch_item *item = &mt76x0_rf_bw_switch_tab[i];
if (item->bw_band == RF_BW_20)
rf_wr(dev, item->rf_bank_reg, item->value);
else if (((RF_G_BAND | RF_BW_20) & item->bw_band) == (RF_G_BAND | RF_BW_20))
rf_wr(dev, item->rf_bank_reg, item->value);
}
for (i = 0; i < ARRAY_SIZE(mt76x0_rf_band_switch_tab); i++) {
if (mt76x0_rf_band_switch_tab[i].bw_band & RF_G_BAND) {
rf_wr(dev,
mt76x0_rf_band_switch_tab[i].rf_bank_reg,
mt76x0_rf_band_switch_tab[i].value);
}
}
/*
Frequency calibration
E1: B0.R22<6:0>: xo_cxo<6:0>
E2: B0.R21<0>: xo_cxo<0>, B0.R22<7:0>: xo_cxo<8:1>
*/
rf_wr(dev, MT_RF(0, 22), min_t(u8, dev->ee->rf_freq_off, 0xBF));
val = rf_rr(dev, MT_RF(0, 22));
/*
Reset the DAC (Set B0.R73<7>=1, then set B0.R73<7>=0, and then set B0.R73<7>) during power up.
*/
val = rf_rr(dev, MT_RF(0, 73));
val |= 0x80;
rf_wr(dev, MT_RF(0, 73), val);
val &= ~0x80;
rf_wr(dev, MT_RF(0, 73), val);
val |= 0x80;
rf_wr(dev, MT_RF(0, 73), val);
/*
vcocal_en (initiate VCO calibration (reset after completion)) - It should be at the end of RF configuration.
*/
rf_set(dev, MT_RF(0, 4), 0x80);
}
void mt76x0_ant_select(struct mt76x0_dev *dev)
{
/* Single antenna mode. */
mt76_rmw(dev, MT_WLAN_FUN_CTRL, BIT(5), BIT(6));
mt76_clear(dev, MT_CMB_CTRL, BIT(14) | BIT(12));
mt76_clear(dev, MT_COEXCFG0, BIT(2));
mt76_rmw(dev, MT_COEXCFG3, BIT(5) | BIT(4) | BIT(3) | BIT(2), BIT(1));
}
void mt76x0_phy_init(struct mt76x0_dev *dev)